16 research outputs found

    Tomato wall-associated kinase SlWak1 depends on Fls2/Fls3 to promote apoplastic immune responses to pseudomonas syringae

    Get PDF
    Wall-associated kinases (Waks) are important components of plant immunity against various pathogens, including the bacterium Pseudomonas syringae pv. tomato (Pst). However, the molecular mechanisms of their role(s) in plant immunity are largely unknown. In tomato (Solanum lycopersicum), wall-associated kinase 1 (SlWak1), has been implicated in pattern recognition receptor (PRR)-triggered immunity (PTI) because its transcript abundance increases significantly after treatment with the flagellin-derived, microbe-associated molecular patterns flg22 and flgII-28, which activate the PRRs Fls2 and Fls3, respectively. We generated two SlWak1 tomato mutants (Dwak1) using CRISPR/Cas9 gene editing technology and investigated the role of SlWak1 in tomato–Pst interactions. Late PTI responses activated in the apoplast by flg22 or flgII-28 were compromised in Dwak1 plants, but PTI at the leaf surface was unaffected. The Dwak1 plants developed fewer callose deposits than wild-type plants, but retained early PTI responses such as generation of reactive oxygen species and activation of mitogen-activated protein kinases upon exposure to flg22 and flgII-28. Induction of Wak1 gene expression by flg22 and flgII-28 was greatly reduced in a tomato mutant lacking Fls2 and Fls3, but induction of Fls3 gene expression by flgII-28 was unaffected in Dwak1 plants. After Pst inoculation, Dwak1 plants developed disease symptoms more slowly than Dfls2.1/2.2/3 mutant plants, although ultimately, both plants were similarly susceptible. SlWak1 coimmunoprecipitated with both Fls2 and Fls3, independently of flg22/flgII-28 or of BRASSINOSTEROID INSENSITIVE1-ASSOCIATED RECEPTOR KINASE1. These observations suggest that SlWak1 acts in a complex with Fls2/Fls3 and is important at later stages of PTI in the apoplast.Fil: Zhang, Ning. Boyce Thompson Intitute for Plant Research; Estados UnidosFil: Pombo, Marina Alejandra. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Fisiología Vegetal. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo. Instituto de Fisiología Vegetal; ArgentinaFil: Rosli, Hernan Guillermo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Fisiología Vegetal. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo. Instituto de Fisiología Vegetal; ArgentinaFil: Martin, Gregory B.. Cornell University; Estados Unidos. Boyce Thompson Intitute for Plant Research; Estados Unido

    Genome-wide analysis uncovers tomato leaf lncRNAs transcriptionally active upon Pseudomonas syringae pv. tomato challenge

    Get PDF
    Plants rely on (in)direct detection of bacterial pathogens through plasma membrane-localized and intracellular receptor proteins. Surface pattern-recognition receptors (PRRs) participate in the detection of microbe-associated molecular patterns (MAMPs) and are required for the activation of pattern-triggered immunity (PTI). Pathogenic bacteria, such as Pseudomonas syringae pv. tomato (Pst) deploys ~ 30 effector proteins into the plant cell that contribute to pathogenicity. Resistant plants are capable of detecting the presence or activity of effectors and mount another response termed effector-triggered immunity (ETI). In order to investigate the involvement of tomato’s long non-coding RNAs (lncRNAs) in the immune response against Pst, we used RNA-seq data to predict and characterize those that are transcriptionally active in leaves challenged with a large set of treatments. Our prediction strategy was validated by sequence comparison with tomato lncRNAs described in previous works and by an alternative approach (RT-qPCR). Early PTI (30 min), late PTI (6 h) and ETI (6 h) differentially expressed (DE) lncRNAs were identified and used to perform a co-expression analysis including neighboring (± 100 kb) DE protein-coding genes. Some of the described networks could represent key regulatory mechanisms of photosynthesis, PRR abundance at the cell surface and mitigation of oxidative stress, associated to tomato-Pst pathosystem.Fil: Rosli, Hernan Guillermo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Fisiología Vegetal. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo. Instituto de Fisiología Vegetal; ArgentinaFil: Sirvent, Emilia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Fisiología Vegetal. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo. Instituto de Fisiología Vegetal; ArgentinaFil: Bekier, Florencia Nicole. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Fisiología Vegetal. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo. Instituto de Fisiología Vegetal; ArgentinaFil: Ramos, Romina Nahir. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Fisiología Vegetal. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo. Instituto de Fisiología Vegetal; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas; ArgentinaFil: Pombo, Marina Alejandra. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Fisiología Vegetal. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo. Instituto de Fisiología Vegetal; Argentin

    Molecular characterization of differences between the tomato immune receptors flagellin sensing 3 and flagellin sensing 2

    Get PDF
    Plants mount defense responses by recognizing indicators of pathogen invasion, including microbe-associated molecular patterns (MAMPs). Flagellin, from the bacterial pathogen Pseudomonas syringae pv. tomato (Pst), contains two MAMPs, flg22 and flgII-28, that are recognized by tomato (Solanum lycopersicum) receptors Flagellin sensing2 (Fls2) and Fls3, respectively, but to what degree each receptor contributes to immunity and whether they promote immune responses using the same molecular mechanisms are unknown. Here, we characterized CRISPR/Cas9-generated Fls2 and Fls3 tomato mutants and found that the two receptors contribute equally to disease resistance both on the leaf surface and in the apoplast. However, we observed striking differences in certain host responses mediated by the two receptors. Compared to Fls2, Fls3 mediated a more sustained production of reactive oxygen species and an increase in transcript abundance of 44 tomato genes, with two genes serving as specific reporters for the Fls3 pathway. Fls3 had greater in vitro kinase activity than Fls2 and could transphosphorylate a substrate. Using chimeric Fls2/Fls3 proteins, we found no evidence that a single receptor domain is responsible for the Fls3-sustained reactive oxygen species, suggesting involvement of multiple structural features or a nullified function of the chimeric construct. This work reveals differences in certain immunity outputs between Fls2 and Fls3, suggesting that they might use distinct molecular mechanisms to activate pattern-triggered immunity in response to flagellin-derived MAMPs.Fil: Roberts, Robyn. Boyce Thompson Institute for Plant Research; Estados UnidosFil: Liu, Alexander E.. Boyce Thompson Institute for Plant Research; Estados UnidosFil: Wan, Lingwei. Boyce Thompson Institute for Plant Research; Estados UnidosFil: Geiger, Annie M.. Boyce Thompson Institute for Plant Research; Estados UnidosFil: Hind, Sarah R.. Boyce Thompson Institute for Plant Research; Estados UnidosFil: Rosli, Hernan Guillermo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Fisiología Vegetal. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo. Instituto de Fisiología Vegetal; ArgentinaFil: Martin, Gregory B.. Boyce Thompson Institute for Plant Research; Estados Unidos. Cornell University; Estados Unido

    Inferring the Significance of the Polyamine Metabolism in the Phytopathogenic Bacteria Pseudomonas syringae: A Meta-Analysis Approach

    Get PDF
    To succeed in plant invasion, phytopathogenic bacteria rely on virulence mechanisms to subvert plant immunity and create favorable conditions for growth. This process requires a precise regulation in the production of important proteins and metabolites. Among them, the family of compounds known as polyamines have attracted considerable attention as they are involved in important cellular processes, but it is not known yet how phytopathogenic bacteria regulate polyamine homeostasis in the plant environment. In the present study, we performed a meta-analysis of publicly available transcriptomic data from experiments conducted on bacteria to begin delving into this topic and better understand the regulation of polyamine metabolism and its links to pathogenicity. We focused our research on Pseudomonas syringae, an important phytopathogen that causes disease in many economically valuable plant species. Our analysis discovered that polyamine synthesis, as well as general gene expression activation and energy production are induced in the early stages of the disease. On the contrary, synthesis of these compounds is inhibited whereas its transport is upregulated later in the process, which correlates with the induction of virulence genes and the metabolism of nitrogen and carboxylic acids. We also found that activation of plant defense mechanisms affects bacterial polyamine synthesis to some extent, which could reduce bacterial cell fitness in the plant environment. Furthermore, data suggest that a proper bacterial response to oxidative conditions requires a decrease in polyamine production. The implications of these findings are discussed.Fil: Solmi, Leandro. Universidad Nacional de San Martin. Instituto Tecnologico de Chascomus. - Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnologico Conicet - la Plata. Instituto Tecnologico de Chascomus.; ArgentinaFil: Rosli, Hernan Guillermo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Fisiología Vegetal. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo. Instituto de Fisiología Vegetal; ArgentinaFil: Pombo, Marina Alejandra. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Fisiología Vegetal. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo. Instituto de Fisiología Vegetal; ArgentinaFil: Stalder, Santiago. Universidad Nacional de San Martin. Instituto Tecnologico de Chascomus. - Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnologico Conicet - la Plata. Instituto Tecnologico de Chascomus.; ArgentinaFil: Rossi, Franco Rubén. Universidad Nacional de San Martin. Instituto Tecnologico de Chascomus. - Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnologico Conicet - la Plata. Instituto Tecnologico de Chascomus.; ArgentinaFil: Romero, Fernando Matias. Universidad Nacional de San Martin. Instituto Tecnologico de Chascomus. - Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnologico Conicet - la Plata. Instituto Tecnologico de Chascomus.; ArgentinaFil: Ruiz, Oscar Adolfo. Universidad Nacional de San Martin. Instituto Tecnologico de Chascomus. - Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnologico Conicet - la Plata. Instituto Tecnologico de Chascomus.; ArgentinaFil: Gárriz, Andrés. Universidad Nacional de San Martin. Instituto Tecnologico de Chascomus. - Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnologico Conicet - la Plata. Instituto Tecnologico de Chascomus.; Argentin

    Functional genomics of tomato for the study of plant immunity

    Get PDF
    Tomato (Solanum lycopersicum), along with many other economically valuable species, belongs to the Solanaceae family. Understanding how plants in this family defend themselves against pathogens offers the opportunity of improving yield and quality of their edible products. The use of functional genomics has contributed to this purpose through both trad- itional and recently developed techniques that allow determination of changes in transcript abundance during pathogen attack. Such changes can implicate the affected gene as participating in plant defense. Testing the involvement of these candidate genes in defense has relied largely on posttranscriptional gene silencing, particularly virus-induced gene silenc- ing. We discuss how functional genomics has played a key role in our current understanding of the defense response in tomato and related species and what are the challenges and opportunities for the future.Fil: Rosli, Hernan Guillermo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Instituto de Investigaciones Biotecnológicas ; ArgentinaFil: Martin, Gregory B.. Cornell University; Estados Unido

    WRKY22 and WRKY25 transcription factors are positive regulators of defense responses in Nicotiana benthamiana

    No full text
    Plants defend themselves against pathogens using a two-layered immune system. Pattern-triggered immunity (PTI) can be activated upon recognition of epitopes from fagellin including fg22. Pseudomonas syringae pv. tomato (Pst) delivers efector proteins into the plant cell to promote host susceptibility. However, some plants express resistance (R) proteins that recognize specifc efectors leading to the activation of efector-triggered immunity (ETI). Resistant tomato lines such as Rio Grande-PtoR (RG-PtoR) recognize two Pst efectors, AvrPto and AvrPtoB, and activate ETI through the Pto/Prf protein complex. Using RNA-seq, we identifed two tomato WRKY transcription factor genes, SlWRKY22 and SlWRKY25, whose expression is increased during Pst-induced ETI. Silencing of the WRKY25/22 orthologous genes in Nicotiana benthamiana led to a delay in programmed cell death normally associated with AvrPto recognition or several non-bacterial efector/R protein pairs. An increase in disease symptoms was observed in silenced plants infltrated with Pseudomonas syringae pv. tabaci expressing AvrPto or HopQ1-1. Expression of both tomato WRKY genes is also induced upon treatment with fg22 and callose deposition and cell death suppression assays in WRKY25/22-silenced N. benthamiana plants supported their involvement in PTI. Our results reveal an important role for two WRKYs as positive regulators of plant immunity against bacterial and potentially non-bacterial pathogens.Fil: Ramos, Romina Nahir. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Fisiología Vegetal. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo. Instituto de Fisiología Vegetal; ArgentinaFil: Martin, Gregory B.. Boyce Thompson Institute For Plant Research; Estados Unidos. Cornell University; Estados UnidosFil: Pombo, Marina Alejandra. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Fisiología Vegetal. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo. Instituto de Fisiología Vegetal; ArgentinaFil: Rosli, Hernan Guillermo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Fisiología Vegetal. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo. Instituto de Fisiología Vegetal; Argentin

    The SGN VIGS Tool: User-Friendly Software to Design Virus-Induced Gene Silencing (VIGS) Constructs for Functional Genomics

    Get PDF
    Virus-induced gene silencing (VIGS) is a powerful method to study gene function in plants. It is based on plant defense mechanisms against viral gene replication and allows high-throughput silencing of genes of interest. However, it can also elicit suppression of off-target genes with sequence similarity, confounding the observed phenotype. Although VIGS is widely used in plant research, no tool is currently available for the design of constructs specifically for this technique. Therefore, at the Sol Genomics Network (SGN) we have developed the SGN VIGS tool to assist researchers with the selection of appropriate regions for silencing experiments (http://solgenomics.net/tools/vigs). This web tool was developed using Perl, JavaScript, AJAX and HTML5 canvas to allow a fast and interactive graphical representation of the results, based on target and off-target positions and integrating the results with gene expression data.Fil: Fernandez-Pozo, Noe. Boyce Thompson Institute for Plant Research; Estados UnidosFil: Rosli, Hernan Guillermo. Boyce Thompson Institute for Plant Research; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Instituto de Investigaciones Biotecnológicas "Dr. Raúl Alfonsín" (sede Chascomús). Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas. Instituto de Investigaciones Biotecnológicas "Dr. Raúl Alfonsín" (sede Chascomús); ArgentinaFil: Martin, Gregory B.. Boyce Thompson Institute for Plant Research; Estados Unidos. Cornell University; Estados UnidosFil: Mueller, Lukas A.. Boyce Thompson Institute for Plant Research; Estados Unido

    Polygalacturonase activity and expression of related genes during ripening of strawberry cultivars with contrasting fruit firmness

    No full text
    Fleshy fruits soften during ripening mainly as a consequence of the catabolism of cell wall components. In strawberry (Fragaria × ananassa Duch), the depolymerization and solubilization of pectins increase during ripening and contribute to fruit softening. In the present paper, we report the cloning and expression analysis of two polygalacturonase (PG) putative cDNAs: FaPG1 and T-PG. The former seems to be the same sequence of previously reported PG in strawberry, while T-PG cDNA has a deletion of 85 bp that cause a frame shift and would produce an inactive protein. Measurement of total PG activity and expression of FaPG1 and T-PG were performed in strawberry cultivars with contrasting softening rates. The softest cultivar (Toyonaka) showed the higher total PG activity in all ripening stages analyzed. The analysis by RT-PCR revealed that both genes express in the three cultivars, though the expression pattern was different. In the firmer cultivars (Selva and Camarosa) the expression of T-PG was considerably higher than the expression of FaPG1, while the opposite occurred in the softest cultivar (Toyonaka). Therefore, the higher PG activity detected in Toyonaka correlates with the enhanced expression of FaPG1 gene, while the low PG activity found in the firm cultivars correlates with a higher expression of T-PG, a gene that could encode a truncated protein without PG activity. The influence of auxins on both the expression of PG genes and the total PG activity during strawberry fruit ripening was also analyzed.Fil: Villarreal, Natalia Marina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas; ArgentinaFil: Rosli, Hernan Guillermo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas; ArgentinaFil: Martinez, Gustavo Adolfo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas; ArgentinaFil: Civello, Pedro Marcos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas; Argentin

    Use of RNA-seq data to identify and validate RT-qPCR reference genes for studying the tomato-Pseudomonas pathosystem

    Get PDF
    The agronomical relevant tomato-Pseudomonas syringae pv. tomato pathosystem is widely used to explore and understand the underlying mechanisms of the plant immune response. Transcript abundance estimation, mainly through reverse transcription-quantitative PCR (RT-qPCR), is a common approach employed to investigate the possible role of a candidate gene in certain biological process under study. The accuracy of this technique relies heavily on the selection of adequate reference genes. Initially, genes derived from other techniques (such as Northern blots) were used as reference genes in RT-qPCR experiments, but recent studies in different systems suggest that many of these genes are not stably expressed. The development of high throughput transcriptomic techniques, such as RNA-seq, provides an opportunity for the identification of transcriptionally stable genes that can be adopted as novel and robust reference genes. Here we take advantage of a large set of RNA-seq data originating from tomato leaves infiltrated with different immunity inducers and bacterial strains. We assessed and validated 9 genes that are much more stable than two traditional reference genes. Specifically, ARD2 and VIN3 were the most stably expressed genes and consequently we propose they be adopted for RT-qPCR experiments involving this pathosystem.Fil: Pombo, Marina Alejandra. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Fisiología Vegetal. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo. Instituto de Fisiología Vegetal; ArgentinaFil: Zheng, Yi. Boyce Thompson Institute for Plant Research; Estados UnidosFil: Fei, Zhangjun. Boyce Thompson Institute for Plant Research; Estados Unidos. United States Department of Agriculture; Estados UnidosFil: Martin, Gregory B.. Boyce Thompson Institute for Plant Research; Estados Unidos. Cornell University; Estados UnidosFil: Rosli, Hernan Guillermo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Fisiología Vegetal. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo. Instituto de Fisiología Vegetal; Argentin

    β-Xylosidase in strawberry fruit: Isolation of a full-length gene and analysis of its expression and enzymatic activity in cultivars with contrasting firmness

    No full text
    Strawberry is a non-climateric fleshy fruit, which softens quickly and has short post-harvest life. Ripening is associated with an increment of pectin solubility and a reduction of the content of hemicelluloses. In this work, we have cloned the full-length cDNA encoding a β-xylosidase (FaXyl1) from Fragaria × ananassa and we have characterized its expression in two strawberry cultivars with contrasting fruit firmness. The analysis of the predicted protein showed that FaXyl1 is closely related to other β-xylosidases from higher plants. The recombinant protein obtained by over-expressing FaXyl1 in Escherichia coli had β-xylosidase activity against the artificial substrate p-nitrophenyl β-d-xilopyranoside. Differently from other bifunctional xylosidases, no α-l-arabinofuranosidase activity was detected in the recombinant enzyme. The expression of FaXyl1 gene was analyzed by northern-blot in Camarosa and Toyonaka strawberry cultivars, and compared with the corresponding protein data obtained by Western-blot and with the β-xylosidase activity during ripening. The softest cultivar (Toyonaka) showed an early accumulation of FaXyl1 transcript and a higher expression of the corresponding protein during ripening, which correlates with a higher β-xylosidase activity in all ripening stages analyzed. © 2006 Elsevier Ireland Ltd. All rights reserved.Fil: Bustamante, Claudia Anabel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Instituto de Investigaciones Biotecnológicas "Dr. Raúl Alfonsín" (sede Chascomús). Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas. Instituto de Investigaciones Biotecnológicas "Dr. Raúl Alfonsín" (sede Chascomús); ArgentinaFil: Rosli, Hernan Guillermo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Instituto de Investigaciones Biotecnológicas "Dr. Raúl Alfonsín" (sede Chascomús). Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas. Instituto de Investigaciones Biotecnológicas "Dr. Raúl Alfonsín" (sede Chascomús); ArgentinaFil: Añon, Maria Cristina. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Centro de Investigación y Desarrollo en Criotecnología de Alimentos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigación y Desarrollo en Criotecnología de Alimentos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Centro de Investigación y Desarrollo en Criotecnología de Alimentos; ArgentinaFil: Civello, Pedro Marcos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Instituto de Investigaciones Biotecnológicas "Dr. Raúl Alfonsín" (sede Chascomús). Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas. Instituto de Investigaciones Biotecnológicas "Dr. Raúl Alfonsín" (sede Chascomús); ArgentinaFil: Martinez, Gustavo Adolfo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Instituto de Investigaciones Biotecnológicas "Dr. Raúl Alfonsín" (sede Chascomús). Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas. Instituto de Investigaciones Biotecnológicas "Dr. Raúl Alfonsín" (sede Chascomús); Argentin
    corecore