30 research outputs found
The Sensitivity of Ligo to a Stochastic Background, and its Dependance on the Detector Orientations
We analyze the sensitivity of a network of interferometer gravitational-wave
detectors to the gravitational-wave stochastic background, and derive the
dependence of this sensitivity on the orientations of the detector arms. We
build on and extend the recent work of Christensen, but our conclusion for the
optimal choice of orientations of a pair of detectors differs from his. For a
pair of detectors (such as LIGO) that subtends an angle at the center of the
earth of \,\alt 70^\circ, we find that the optimal configuration is for each
detector to have its arms make an angle of (modulo ) with
the arc of the great circle that joins them. For detectors that are farther
separated, each detector should instead have one arm aligned with this arc. We
also describe in detail the optimal data-analysis algorithm for searching for
the stochastic background with a detector network, which is implicit in earlier
work of Michelson. The LIGO pair of detectors will be separated by . The minimum detectable stochastic energy-density for these
detectors with their currently planned orientations is greater than
what it would be if the orientations were optimal.Comment: 56 pages, 10 figures, Caltech preprint GRP-347, submitted to Phys Rev
D, uses revtex macro
Nanoparticles for Applications in Cellular Imaging
In the following review we discuss several types of nanoparticles (such as TiO2, quantum dots, and gold nanoparticles) and their impact on the ability to image biological components in fixed cells. The review also discusses factors influencing nanoparticle imaging and uptake in live cells in vitro. Due to their unique size-dependent properties nanoparticles offer numerous advantages over traditional dyes and proteins. For example, the photostability, narrow emission peak, and ability to rationally modify both the size and surface chemistry of Quantum Dots allow for simultaneous analyses of multiple targets within the same cell. On the other hand, the surface characteristics of nanometer sized TiO2allow efficient conjugation to nucleic acids which enables their retention in specific subcellular compartments. We discuss cellular uptake mechanisms for the internalization of nanoparticles and studies showing the influence of nanoparticle size and charge and the cell type targeted on nanoparticle uptake. The predominant nanoparticle uptake mechanisms include clathrin-dependent mechanisms, macropinocytosis, and phagocytosis
Strategies for Controlled Placement of Nanoscale Building Blocks
The capability of placing individual nanoscale building blocks on exact substrate locations in a controlled manner is one of the key requirements to realize future electronic, optical, and magnetic devices and sensors that are composed of such blocks. This article reviews some important advances in the strategies for controlled placement of nanoscale building blocks. In particular, we will overview template assisted placement that utilizes physical, molecular, or electrostatic templates, DNA-programmed assembly, placement using dielectrophoresis, approaches for non-close-packed assembly of spherical particles, and recent development of focused placement schemes including electrostatic funneling, focused placement via molecular gradient patterns, electrodynamic focusing of charged aerosols, and others
Polymetallic emitting lanthanide dendrimer complexes and metal-organic frameworks as bright near-infrared optical imaging agents
International audienc
Polymetallic lanthanide near-infrared emitting compounds for optical microscopy: dendrimer complexes and metal organic frameworks
International audienc
Metal-organic frameworks and polymetallic dendrimer complexes: new perspectives for near-infrared imaging based on lanthanides
International audienc
Novel Perspectives in Near-Infrared Optical Imaging with Lanthanide-Based Molecules, Macromolecules and Nanomaterials
International audienc