1,801 research outputs found

    Measurement of the Gravity-Field Curvature by Atom Interferometry

    Get PDF
    We present the first direct measurement of the gravity-field curvature based on three conjugated atom interferometers. Three atomic clouds launched in the vertical direction are simultaneously interrogated by the same atom interferometry sequence and used to probe the gravity field at three equally spaced positions. The vertical component of the gravity-field curvature generated by nearby source masses is measured from the difference between adjacent gravity gradient values. Curvature measurements are of interest in geodesy studies and for the validation of gravitational models of the surrounding environment. The possibility of using such a scheme for a new determination of the Newtonian constant of gravity is also discussed.Comment: 5 pages, 3 figure

    Band gaps in the relaxed linear micromorphic continuum

    Full text link
    In this note we show that the relaxed linear micromorphic model recently proposed by the authors can be suitably used to describe the presence of band-gaps in metamaterials with microstructures in which strong contrasts of the mechanical properties are present (e.g. phononic crystals and lattice structures). This relaxed micromorphic model only has 6 constitutive parameters instead of 18 parameters needed in Mindlin- and Eringen-type classical micromorphic models. We show that the onset of band-gaps is related to a unique constitutive parameter, the Cosserat couple modulus μc\mu_{c} which starts to account for band-gaps when reaching a suitable threshold value. The limited number of parameters of our model, as well as the specific effect of some of them on wave propagation can be seen as an important step towards indirect measurement campaigns

    Quantum test of the equivalence principle for atoms in superpositions of internal energy eigenstates

    Full text link
    The Einstein Equivalence Principle (EEP) has a central role in the understanding of gravity and space-time. In its weak form, or Weak Equivalence Principle (WEP), it directly implies equivalence between inertial and gravitational mass. Verifying this principle in a regime where the relevant properties of the test body must be described by quantum theory has profound implications. Here we report on a novel WEP test for atoms. A Bragg atom interferometer in a gravity gradiometer configuration compares the free fall of rubidium atoms prepared in two hyperfine states and in their coherent superposition. The use of the superposition state allows testing genuine quantum aspects of EEP with no classical analogue, which have remained completely unexplored so far. In addition, we measure the Eotvos ratio of atoms in two hyperfine levels with relative uncertainty in the low 10−910^{-9}, improving previous results by almost two orders of magnitude.Comment: Accepted for publication in Nature Communicatio

    Sensitivity limits of a Raman atom interferometer as a gravity gradiometer

    Full text link
    We evaluate the sensitivity of a dual cloud atom interferometer to the measurement of vertical gravity gradient. We study the influence of most relevant experimental parameters on noise and long-term drifts. Results are also applied to the case of doubly differential measurements of the gravitational signal from local source masses. We achieve a short term sensitivity of 3*10^(-9) g/Hz^(-1/2) to differential gravity acceleration, limited by the quantum projection noise of the instrument. Active control of the most critical parameters allows to reach a resolution of 5*10^(-11) g after 8000 s on the measurement of differential gravity acceleration. The long term stability is compatible with a measurement of the gravitational constant G at the level of 10^(-4) after an integration time of about 100 hours.Comment: 19 pages, 20 figure

    Atom Interferometry with the Rb Blue Transitions

    Full text link
    We demonstrate a novel scheme for Raman-pulse and Bragg-pulse atom interferometry based on the 5S−6P5\mathrm{S} - 6\mathrm{P} blue transitions of 87^{87}Rb that provides an increase by a factor ∼2\sim 2 of the interferometer phase due to accelerations with respect to the commonly used infrared transition at 780 nm. A narrow-linewidth laser system generating more than 1 W of light in the 420-422 nm range was developed for this purpose. Used as a cold-atom gravity gradiometer, our Raman interferometer attains a stability to differential acceleration measurements of 1×10−81\times10^{-8} gg at 1 s and 2×10−102\times 10^{-10} gg after 2000 s of integration time. When operated on first-order Bragg transitions, the interferometer shows a stability of 6×10−86\times10^{-8} g at 1 s, averaging to 1×10−91\times10^{-9} g after 2000 s of integration time. The instrument sensitivity, currently limited by the noise due to spontaneous emission, can be further improved by increasing the laser power and the detuning from the atomic resonance. The present scheme is attractive for high-precision experiments as, in particular, for the determination of the Newtonian gravitational constant

    New apparatus design for high-precision measurement ofG with atom interferometry

    Full text link
    We propose a new scheme for an improved determination of the Newtonian gravitational constant G and evaluate it by numerical simulations. Cold atoms in free fall are probed by atom interferometry measurements to characterize the gravitational field generated by external source masses. Two source mass configurations having different geometry and using different materials are compared to identify an optimized experimental setup for the G measurement. The effects of the magnetic fields used to manipulate the atoms and to control the interferometer phase are also characterized

    Atmospheric fluctuations below 0.1 Hz during drift-scan solar diameter measurements

    Full text link
    Measurements of the power spectrum of the seeing in the range 0.001-1 Hz have been performed in order to understand the criticity of the transits' method for solar diameter monitoring.Comment: 3 pages, 3 figures, proc. of the Fourth French-Chinese meeting on Solar Physics Understanding Solar Activity: Advances and Challenges, 15 - 18 November, 2011 Nice, Franc

    Microfiltration and ultra-high-pressure homogenization for extending the shelf-storage stability of UHT milk

    Get PDF
    Fat separation, gelation or sedimentation of UHT milk during shelf-storage represent instability phenomena causing the product rejection by consumers. Stability of UHT milk is of increasing concern because access to emerging markets currently implies for this product to be stable during shipping and prolonged storage, up to 12 months. The role of microfiltration prior to UHT process in avoiding or retarding the gelation or sediment formation was studied by comparing microfiltered UHT milk to conventional UHT milk. A second trial was set up to study the effects of double ultra-high pressure homogenization in delaying the cream rising and UHT milk homogenized once at lower pressure was taken as control. All milk samples were produced at industrial plant level. Milk packages were stored at 22 \ub0C, opened monthly for visually inspecting the presence of cream layer, gel or sediment and then analysed. Microfiltration markedly delayed the formation of both gel particles and sediment, with respect to the control, and slowed down the proteolysis in terms of accumulation of peptides although no correlation was observed between the two phenomena. The double homogenization, also evaluated at ultra-structural level, narrowed the fat globule distribution and the second one (400 MPa), performed downstream to the sterilization step, disrupted the fat-protein aggregates produced in the first one (250 MPa). The adopted conditions avoided the appearance of the cream layer in the UHT milk up to 18 months. This study contributes important knowledge for developing strategies to delay instability phenomena in UHT milk destined to extremely long shelf storage
    • …
    corecore