1,827 research outputs found
Measurement of the Gravity-Field Curvature by Atom Interferometry
We present the first direct measurement of the gravity-field curvature based
on three conjugated atom interferometers. Three atomic clouds launched in the
vertical direction are simultaneously interrogated by the same atom
interferometry sequence and used to probe the gravity field at three equally
spaced positions. The vertical component of the gravity-field curvature
generated by nearby source masses is measured from the difference between
adjacent gravity gradient values. Curvature measurements are of interest in
geodesy studies and for the validation of gravitational models of the
surrounding environment. The possibility of using such a scheme for a new
determination of the Newtonian constant of gravity is also discussed.Comment: 5 pages, 3 figure
Band gaps in the relaxed linear micromorphic continuum
In this note we show that the relaxed linear micromorphic model recently
proposed by the authors can be suitably used to describe the presence of
band-gaps in metamaterials with microstructures in which strong contrasts of
the mechanical properties are present (e.g. phononic crystals and lattice
structures). This relaxed micromorphic model only has 6 constitutive parameters
instead of 18 parameters needed in Mindlin- and Eringen-type classical
micromorphic models. We show that the onset of band-gaps is related to a unique
constitutive parameter, the Cosserat couple modulus which starts to
account for band-gaps when reaching a suitable threshold value. The limited
number of parameters of our model, as well as the specific effect of some of
them on wave propagation can be seen as an important step towards indirect
measurement campaigns
Quantum test of the equivalence principle for atoms in superpositions of internal energy eigenstates
The Einstein Equivalence Principle (EEP) has a central role in the
understanding of gravity and space-time. In its weak form, or Weak Equivalence
Principle (WEP), it directly implies equivalence between inertial and
gravitational mass. Verifying this principle in a regime where the relevant
properties of the test body must be described by quantum theory has profound
implications. Here we report on a novel WEP test for atoms. A Bragg atom
interferometer in a gravity gradiometer configuration compares the free fall of
rubidium atoms prepared in two hyperfine states and in their coherent
superposition. The use of the superposition state allows testing genuine
quantum aspects of EEP with no classical analogue, which have remained
completely unexplored so far. In addition, we measure the Eotvos ratio of atoms
in two hyperfine levels with relative uncertainty in the low ,
improving previous results by almost two orders of magnitude.Comment: Accepted for publication in Nature Communicatio
Sensitivity limits of a Raman atom interferometer as a gravity gradiometer
We evaluate the sensitivity of a dual cloud atom interferometer to the
measurement of vertical gravity gradient. We study the influence of most
relevant experimental parameters on noise and long-term drifts. Results are
also applied to the case of doubly differential measurements of the
gravitational signal from local source masses. We achieve a short term
sensitivity of 3*10^(-9) g/Hz^(-1/2) to differential gravity acceleration,
limited by the quantum projection noise of the instrument. Active control of
the most critical parameters allows to reach a resolution of 5*10^(-11) g after
8000 s on the measurement of differential gravity acceleration. The long term
stability is compatible with a measurement of the gravitational constant G at
the level of 10^(-4) after an integration time of about 100 hours.Comment: 19 pages, 20 figure
Atom Interferometry with the Rb Blue Transitions
We demonstrate a novel scheme for Raman-pulse and Bragg-pulse atom
interferometry based on the blue transitions of
Rb that provides an increase by a factor of the interferometer
phase due to accelerations with respect to the commonly used infrared
transition at 780 nm. A narrow-linewidth laser system generating more than 1 W
of light in the 420-422 nm range was developed for this purpose. Used as a
cold-atom gravity gradiometer, our Raman interferometer attains a stability to
differential acceleration measurements of at 1 s and
after 2000 s of integration time. When operated on
first-order Bragg transitions, the interferometer shows a stability of
g at 1 s, averaging to g after 2000 s of
integration time. The instrument sensitivity, currently limited by the noise
due to spontaneous emission, can be further improved by increasing the laser
power and the detuning from the atomic resonance. The present scheme is
attractive for high-precision experiments as, in particular, for the
determination of the Newtonian gravitational constant
New apparatus design for high-precision measurement ofG with atom interferometry
We propose a new scheme for an improved determination of the Newtonian
gravitational constant G and evaluate it by numerical simulations. Cold atoms
in free fall are probed by atom interferometry measurements to characterize the
gravitational field generated by external source masses. Two source mass
configurations having different geometry and using different materials are
compared to identify an optimized experimental setup for the G measurement. The
effects of the magnetic fields used to manipulate the atoms and to control the
interferometer phase are also characterized
Atmospheric fluctuations below 0.1 Hz during drift-scan solar diameter measurements
Measurements of the power spectrum of the seeing in the range 0.001-1 Hz have
been performed in order to understand the criticity of the transits' method for
solar diameter monitoring.Comment: 3 pages, 3 figures, proc. of the Fourth French-Chinese meeting on
Solar Physics Understanding Solar Activity: Advances and Challenges, 15 - 18
November, 2011 Nice, Franc
Microfiltration and ultra-high-pressure homogenization for extending the shelf-storage stability of UHT milk
Fat separation, gelation or sedimentation of UHT milk during shelf-storage represent instability phenomena causing the product rejection by consumers. Stability of UHT milk is of increasing concern because access to emerging markets currently implies for this product to be stable during shipping and prolonged storage, up to 12 months. The role of microfiltration prior to UHT process in avoiding or retarding the gelation or sediment formation was studied by comparing microfiltered UHT milk to conventional UHT milk. A second trial was set up to study the effects of double ultra-high pressure homogenization in delaying the cream rising and UHT milk homogenized once at lower pressure was taken as control. All milk samples were produced at industrial plant level. Milk packages were stored at 22 \ub0C, opened monthly for visually inspecting the presence of cream layer, gel or sediment and then analysed. Microfiltration markedly delayed the formation of both gel particles and sediment, with respect to the control, and slowed down the proteolysis in terms of accumulation of peptides although no correlation was observed between the two phenomena. The double homogenization, also evaluated at ultra-structural level, narrowed the fat globule distribution and the second one (400 MPa), performed downstream to the sterilization step, disrupted the fat-protein aggregates produced in the first one (250 MPa). The adopted conditions avoided the appearance of the cream layer in the UHT milk up to 18 months. This study contributes important knowledge for developing strategies to delay instability phenomena in UHT milk destined to extremely long shelf storage
- …