288 research outputs found
Correlated two-photon emission by transitions of Dirac-Volkov states in intense laser fields: QED predictions
In an intense laser field, an electron may decay by emitting a pair of
photons. The two photons emitted during the process, which can be interpreted
as a laser-dressed double Compton scattering, remain entangled in a
quantifiable way: namely, the so-called concurrence of the photon polarizations
gives a gauge-invariant measure of the correlation of the hard gamma rays. We
calculate the differential rate and concurrence for a backscattering setup of
the electron and photon beam, employing Volkov states and propagators for the
electron lines, thus accounting nonperturbatively for the electron-laser
interaction. The nonperturbative results are shown to differ significantly
compared to those obtained from the usual double Compton scattering.Comment: 32 pages, 12 figure
Friedmann Universes and Exact Solutions in String Cosmology
We show that the classical null strings generate the Hilbert-Einstein gravity
corresponding to D-dimensional Friedmann universes.Comment: 8 pages, LATE
Muon pair creation from positronium in a circularly polarized laser field
We study elementary particle reactions that result from the interaction of an
atomic system with a very intense laser wave of circular polarization. As a
specific example, we calculate the rate for the laser-driven reaction , where the electron and positron originate from a positronium
atom or, alternatively, from a nonrelativistic plasma. We distinguish
accordingly between the coherent and incoherent channels of the process. Apart
from numerical calculations, we derive by analytical means compact formulas for
the corresponding reaction rates. The rate for the coherent channel in a laser
field of circular polarization is shown to be damped because of the destructive
interference of the partial waves that constitute the positronium ground-state
wave packet. Conditions for the observation of the process via the dominant
incoherent channel in a circularly polarized field are pointed out
Scanning Electron Microscopy Observation of the Interaction Between the Surface Acoustic Waves and Regular Domain Structures in the LiNbO3 Crystals
This paper reports a scanning electron microscope study of the interaction between the surface acoustic waves and regular domain structures in LiNbO3 crystals. The regular domain structures in LiNbO3 crystals were formed by the method of the thermo-electric treatment after growth. We investigated two modes of interaction: the surface-acoustic-waves propagate along and across the regular domain structures. It is shown that the regular domain structures in the first case can be used as an acoustical wave-guide, because the power-flow vector of the surface acoustic waves has the direction along the domain structure. Also we observed that the surface acoustic wave inverts the voltage contrast of the image in the scanning electron microscope by π during the process of the propagation across the domain walls
Breit-Wheeler Process in Intense Short Laser Pulses
Energy-angular distributions of electron-positron pair creation in collisions
of a laser beam and a nonlaser photon are calculated using the -matrix
formalism. The laser field is modeled as a finite pulse, similar to the
formulation introduced in our recent paper in the context of Compton scattering
[Phys. Rev. A {\bf 85}, 062102 (2012)]. The nonperturbative regime of pair
creation is considered here. The energy spectra of created particles are
compared with the corresponding spectra obtained using the modulated plane wave
approximation for the driving laser field. A very good agreement in these two
cases is observed, provided that the laser pulse is sufficiently long. For
short pulse durations, this agreement breaks down. The sensitivity of pair
production to the polarization of a driving pulse is also investigated. We show
that in the nonperturbative regime, the pair creation yields depend on the
polarization of the pulse, reaching their maximal values for the linear
polarization. Therefore, we focus on this case. Specifically, we analyze the
dependence of pair creation on the relative configuration of linear
polarizations of the laser pulse and the nonlaser photon. Lastly, we
investigate the carrier-envelope phase effect on angular distributions of
created particles, suggesting the possibility of phase control in relation to
the pair creation processes.Comment: 13 pages, 8 figure
Image Registration and Predictive Modeling: Learning the Metric on the Space of Diffeomorphisms
We present a method for metric optimization in the Large Deformation Diffeomorphic Metric Mapping (LDDMM) framework, by treating the induced Riemannian metric on the space of diffeomorphisms as a kernel in a machine learning context. For simplicity, we choose the kernel Fischer Linear Discriminant Analysis (KLDA) as the framework. Optimizing the kernel parameters in an Expectation-Maximization framework, we define model fidelity via the hinge loss of the decision function. The resulting algorithm optimizes the parameters of the LDDMM norm-inducing differential operator as a solution to a group-wise registration and classification problem. In practice, this may lead to a biology-aware registration, focusing its attention on the predictive task at hand such as identifying the effects of disease. We first tested our algorithm on a synthetic dataset, showing that our parameter selection improves registration quality and classification accuracy. We then tested the algorithm on 3D subcortical shapes from the Schizophrenia cohort Schizconnect. Our Schizophrenia-Control predictive model showed significant improvement in ROC AUC compared to baseline parameters
- …