120 research outputs found

    Management der Primären Ciliären Dyskinesie

    Full text link
    Die Primäre Ciliäre Dyskinesie (PCD, MIM 242650) ist eine seltene hereditäre Multisystemerkrankung mit klinisch heterogenem Phänotyp. Leitsymptom ist eine chronische Sekretretention der oberen und unteren Atemwege, welche durch die Dysfunktion motiler respiratorischer Zilien entsteht. In der Folge kommt es zur Ausbildung von Bronchiektasen, häufig zu einer Infektion durch Pseudomonas aeruginosa sowie einer abnehmenden Lungenfunktion bis hin zum Lungenversagen. Bislang gibt es kaum evidenzbasierte Therapieempfehlungen, da randomisierte Langzeitstudien zur Behandlung der PCD fehlten. In diesem Jahr wurden die Daten einer ersten placebokontrollierten Medikamentenstudie bei PCD veröffentlicht. Anlässlich dieses Meilensteins im Management der PCD wurde der vorliegende Übersichtsartikel als Konsens von Patientenvertretern sowie Klinikern, die langjährige Erfahrung in der Behandlung der PCD haben, verfasst. Diese Arbeit bietet eine Zusammenfassung aktuell eingesetzter Behandlungsverfahren, die überwiegend auf persönlichen Erfahrungen und Expertenmeinungen beruhen oder von anderen Atemwegserkrankungen wie der Cystischen Fibrose (CF), COPD oder Bronchiektasen-Erkrankung abgeleitet werden. Da es derzeit keine kurative Therapie für PCD gibt, stehen symptomatische Maßnahmen wie die regelmäßige Reinigung der Atemwege und die Behandlung von rezidivierenden Atemwegsinfektionen im Fokus. Nicht respiratorische Manifestationen werden organspezifisch behandelt. Um neben der ersten Medikamentenstudie mehr evidenzbasiertes Wissen zu generieren, werden weitere Projekte etabliert, u. a. ein internationales PCD-Register. Hierüber wird Patienten der Zugang zu klinischen und wissenschaftlichen Studien erleichtert und die Vernetzung behandelnder Zentren gefördert. Des Weiteren können Erkenntnisse über eine Genotyp-spezifische Erkrankungsschwere erlangt werden, um folglich die therapeutische Versorgung der Patienten zu verbessern und somit zu individualisieren. = Primary Ciliary Dyskinesia (PCD, MIM 242650) is a rare, hereditary multiorgan disease characterized by malfunction of motile cilia. Hallmark symptom is a chronic airway infection due to mucostasis leading to irreversible lung damage that may progress to respiratory failure. There is no cure for this genetic disease and evidence-based treatment is limited. Until recently, there were no randomized controlled trials performed in PCD, but this year, data of the first placebo-controlled trial on pharmacotherapy in PCD were published. This cornerstone in the management of PCD was decisive for reviewing currently used treatment strategies. This article is a consensus of patient representatives and clinicians, which are highly experienced in care of PCD-patients and provides an overview of the management of PCD. Treatments are mainly based on expert opinions, personal experiences, or are deduced from other lung diseases, notably cystic fibrosis (CF), COPD or bronchiectasis. Most strategies focus on routine airway clearance and treatment of recurrent respiratory tract infections. Non-respiratory symptoms are treated organ specific. To generate further evidence-based knowledge, other projects are under way, e. g. the International PCD-Registry. Participating in patient registries facilitates access to clinical and research studies and strengthens networks between centers. In addition, knowledge of genotype-specific course of the disease will offer the opportunity to further improve and individualize patient care

    Faulty cardiac repolarization reserve in alternating hemiplegia of childhood broadens the phenotype

    Get PDF
    Alternating hemiplegia of childhood is a rare disorder caused by de novo mutations in the ATP1A3 gene, expressed in neurons and cardiomyocytes. As affected individuals may survive into adulthood, we use the term 'alternating hemiplegia'. The disorder is characterized by early-onset, recurrent, often alternating, hemiplegic episodes; seizures and non-paroxysmal neurological features also occur. Dysautonomia may occur during hemiplegia or in isolation. Premature mortality can occur in this patient group and is not fully explained. Preventable cardiorespiratory arrest from underlying cardiac dysrhythmia may be a cause. We analysed ECG recordings of 52 patients with alternating hemiplegia from nine countries: all had whole-exome, whole-genome, or direct Sanger sequencing of ATP1A3. Data on autonomic dysfunction, cardiac symptoms, medication, and family history of cardiac disease or sudden death were collected. All had 12-lead electrocardiogram recordings available for cardiac axis, cardiac interval, repolarization pattern, and J-point analysis. Where available, historical and prolonged single-lead electrocardiogram recordings during electrocardiogram-videotelemetry were analysed. Half the cohort (26/52) had resting 12-lead electrocardiogram abnormalities: 25/26 had repolarization (T wave) abnormalities. These abnormalities were significantly more common in people with alternating hemiplegia than in an age-matched disease control group of 52 people with epilepsy. The average corrected QT interval was significantly shorter in people with alternating hemiplegia than in the disease control group. J wave or J-point changes were seen in six people with alternating hemiplegia. Over half the affected cohort (28/52) had intraventricular conduction delay, or incomplete right bundle branch block, a much higher proportion than in the normal population or disease control cohort (P = 0.0164). Abnormalities in alternating hemiplegia were more common in those ≥16 years old, compared with those <16 (P = 0.0095), even with a specific mutation (p.D801N; P = 0.045). Dynamic, beat-to-beat or electrocardiogram-to-electrocardiogram, changes were noted, suggesting the prevalence of abnormalities was underestimated. Electrocardiogram changes occurred independently of seizures or plegic episodes. Electrocardiogram abnormalities are common in alternating hemiplegia, have characteristics reflecting those of inherited cardiac channelopathies and most likely amount to impaired repolarization reserve. The dynamic electrocardiogram and neurological features point to periodic systemic decompensation in ATP1A3-expressing organs. Cardiac dysfunction may account for some of the unexplained premature mortality of alternating hemiplegia. Systematic cardiac investigation is warranted in alternating hemiplegia of childhood, as cardiac arrhythmic morbidity and mortality are potentially preventable

    Insertion of Horizontally Transferred Genes within Conserved Syntenic Regions of Yeast Genomes

    Get PDF
    Horizontal gene transfer has been occasionally mentioned in eukaryotic genomes, but such events appear much less numerous than in prokaryotes, where they play important functional and evolutionary roles. In yeasts, few independent cases have been described, some of which corresponding to major metabolic functions, but no systematic screening of horizontally transferred genes has been attempted so far. Taking advantage of the synteny conservation among five newly sequenced and annotated genomes of Saccharomycetaceae, we carried out a systematic search for HGT candidates amidst genes present in only one species within conserved synteny blocks. Out of 255 species-specific genes, we discovered 11 candidates for HGT, based on their similarity with bacterial proteins and on reconstructed phylogenies. This corresponds to a minimum of six transfer events because some horizontally acquired genes appear to rapidly duplicate in yeast genomes (e.g. YwqG genes in Kluyveromyces thermotolerans and serine recombinase genes of the IS607 family in Saccharomyces kluyveri). We show that the resulting copies are submitted to a strong functional selective pressure. The mechanisms of DNA transfer and integration are discussed, in relation with the generally small size of HGT candidates. Our results on a limited set of species expand by 50% the number of previously published HGT cases in hemiascomycetous yeasts, suggesting that this type of event is more frequent than usually thought. Our restrictive method does not exclude the possibility that additional HGT events exist. Actually, ancestral events common to several yeast species must have been overlooked, and the absence of homologs in present databases leaves open the question of the origin of the 244 remaining species-specific genes inserted within conserved synteny blocks

    Genome of the facultative scuticociliatosis pathogen Pseudocohnilembus persalinus provides insight into its virulence through horizontal gene transfer

    Get PDF
    This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ The attached file is the published version of the article

    The Wor1-like Protein Fgp1 Regulates Pathogenicity, Toxin Synthesis and Reproduction in the Phytopathogenic Fungus Fusarium graminearum

    Get PDF
    WOR1 is a gene for a conserved fungal regulatory protein controlling the dimorphic switch and pathogenicity determents in Candida albicans and its ortholog in the plant pathogen Fusarium oxysporum, called SGE1, is required for pathogenicity and expression of key plant effector proteins. F. graminearum, an important pathogen of cereals, is not known to employ switching and no effector proteins from F. graminearum have been found to date that are required for infection. In this study, the potential role of the WOR1-like gene in pathogenesis was tested in this toxigenic fungus. Deletion of the WOR1 ortholog (called FGP1) in F. graminearum results in greatly reduced pathogenicity and loss of trichothecene toxin accumulation in infected wheat plants and in vitro. The loss of toxin accumulation alone may be sufficient to explain the loss of pathogenicity to wheat. Under toxin-inducing conditions, expression of genes for trichothecene biosynthesis and many other genes are not detected or detected at lower levels in Δfgp1 strains. FGP1 is also involved in the developmental processes of conidium formation and sexual reproduction and modulates a morphological change that accompanies mycotoxin production in vitro. The Wor1-like proteins in Fusarium species have highly conserved N-terminal regions and remarkably divergent C-termini. Interchanging the N- and C- terminal portions of proteins from F. oxysporum and F. graminearum resulted in partial to complete loss of function. Wor1-like proteins are conserved but have evolved to regulate pathogenicity in a range of fungi, likely by adaptations to the C-terminal portion of the protein

    Allergen-specific immunotherapy provides immediate, long-term and preventive clinical effects in children and adults: the effects of immunotherapy can be categorised by level of benefit -the centenary of allergen specific subcutaneous immunotherapy

    Get PDF
    Allergen Specific Immunotherapy (SIT) for respiratory allergic diseases is able to significantly improve symptoms as well as reduce the need for symptomatic medication, but SIT also has the capacity for long-term clinical effects and plays a protective role against the development of further allergies and symptoms. The treatment acts on basic immunological mechanisms, and has the potential to change the pathological allergic immune response. In this paper we discuss some of the most important achievements in the documentation of the benefits of immunotherapy, over the last 2 decades, which have marked a period of extensive research on the clinical effects and immunological background of the mechanisms involved. The outcome of immunotherapy is described as different levels of benefit from early reduction in symptoms over progressive clinical effects during treatment to long-term effects after discontinuation of the treatment and prevention of asthma. The efficacy of SIT increases the longer it is continued and immunological changes lead to potential long-term benefits. SIT alone and not the symptomatic treatment nor other avoidance measures has so far been documented as the therapy with long-term or preventive potential. The allergic condition is driven by a subset of T-helper lymphocytes (Th2), which are characterised by the production of cytokines like IL-4, and IL-5. Immunological changes following SIT lead to potential curative effects. One mechanism whereby immunotherapy suppresses the allergic response is through increased production of IgG4 antibodies. Induction of specific IgG4 is able to influence the allergic response in different ways and is related to immunological effector mechanisms, also responsible for the reduced late phase hyperreactivity and ongoing allergic inflammation. SIT is the only treatment which interferes with the basic pathophysiological mechanisms of the allergic disease, thereby creating the potential for changes in the long-term prognosis of respiratory allergy. SIT should not only be recognised as first-line therapeutic treatment for allergic rhinoconjunctivitis but also as secondary preventive treatment for respiratory allergic diseases
    • …
    corecore