2,516 research outputs found

    Infrared Spectroscopy of Naphthalene Aggregation and Cluster Formation in Argon Matrices

    Get PDF
    Fourier-transform mid-infrared absorption spectra of mixed argon/naphthalene matrices at 5 K are shown with ratios of argon-to-naphthalene that vary from 1000 to 0. These spectra show the changes as naphthalene clustering and aggregation occurs, with moderate spectral shifts affecting the C-H vibrational modes and relatively small or no shifts to the C-C and C-C-C vibrational modes. The possible contribution of homogeneous naphthalene clusters to the interstellar unidentified infrared bands is discussed. The contribution of polycyclic aromatic hydrocarbon (PAH) clusters to the 7.7 micron emission plateau and the blue shading of the 12.7 micron emission band are identified as promising candidates for future research. In addition, since PAH clusters are model components of Jupiter and Titan's atmospheres, the information presented here may also be applicable to the spectroscopy of these objects

    Large-Scale Regular Morphological Patterns in the Radio Jet of NGC 6251

    Get PDF
    We report on large-scale, regular morphological patterns found in the radio jet of the nearby radio galaxy NGC 6251. Investigating morphological properties of this radio jet from the nucleus to a radial distance of \sim 300 arcsec (\approx 140 kpc) mapped at 1662 MHz and 4885 MHz by Perley, Bridle, & Willis, we find three chains, each of which consists of five radio knots. We also find that eight radio knots in the first two chains consist of three small sub-knots (the triple-knotty substructures). We discuss the observational properties of these regular morphological patterns.Comment: 8 figures, 15 pages, accepted for publication in A

    Computer-assisted polyp matching between optical colonoscopy and CT colonography: a phantom study

    Full text link
    Potentially precancerous polyps detected with CT colonography (CTC) need to be removed subsequently, using an optical colonoscope (OC). Due to large colonic deformations induced by the colonoscope, even very experienced colonoscopists find it difficult to pinpoint the exact location of the colonoscope tip in relation to polyps reported on CTC. This can cause unduly prolonged OC examinations that are stressful for the patient, colonoscopist and supporting staff. We developed a method, based on monocular 3D reconstruction from OC images, that automatically matches polyps observed in OC with polyps reported on prior CTC. A matching cost is computed, using rigid point-based registration between surface point clouds extracted from both modalities. A 3D printed and painted phantom of a 25 cm long transverse colon segment was used to validate the method on two medium sized polyps. Results indicate that the matching cost is smaller at the correct corresponding polyp between OC and CTC: the value is 3.9 times higher at the incorrect polyp, comparing the correct match between polyps to the incorrect match. Furthermore, we evaluate the matching of the reconstructed polyp from OC with other colonic endoluminal surface structures such as haustral folds and show that there is a minimum at the correct polyp from CTC. Automated matching between polyps observed at OC and prior CTC would facilitate the biopsy or removal of true-positive pathology or exclusion of false-positive CTC findings, and would reduce colonoscopy false-negative (missed) polyps. Ultimately, such a method might reduce healthcare costs, patient inconvenience and discomfort.Comment: This paper was presented at the SPIE Medical Imaging 2014 conferenc

    Synthetic Observations of Simulated Radio Galaxies I: Radio and X-ray Analysis

    Get PDF
    We present an extensive synthetic observational analysis of numerically- simulated radio galaxies designed to explore the effectiveness of conventional observational analyses at recovering physical source properties. These are the first numerical simulations with sufficient physical detail to allow such a study. The present paper focuses on extraction of magnetic field properties from nonthermal intensity information. Synchrotron and inverse-Compton intensities provided meaningful information about distributions and strengths of magnetic fields, although considerable care was called for. Correlations between radio and X-ray surface brightness correctly revealed useful dynamical relationships between particles and fields. Magnetic field strength estimates derived from the ratio of X-ray to radio intensity were mostly within about a factor of two of the RMS field strength along a given line of sight. When emissions along a given line of sight were dominated by regions close to the minimum energy/equipartition condition, the field strengths derived from the standard power-law-spectrum minimum energy calculation were also reasonably close to actual field strengths, except when spectral aging was evident. Otherwise, biases in the minimum- energy magnetic field estimation mirrored actual differences from equipartition. The ratio of the inverse-Compton magnetic field to the minimum-energy magnetic field provided a rough measure of the actual total energy in particles and fields in most instances, within an order of magnitude. This may provide a practical limit to the accuracy with which one may be able to establish the internal energy density or pressure of optically thin synchrotron sources.Comment: 43 pages, 14 figures; accepted for publication in ApJ, v601 n2 February 1, 200

    Molecular Hydrogen Formation on Low Temperature Surfaces in Temperature Programmed Desorption Experiments

    Full text link
    The study of the formation of molecular hydrogen on low temperature surfaces is of interest both because it allows to explore elementary steps in the heterogeneous catalysis of a simple molecule and because of the applications in astrochemistry. Here we report results of experiments of molecular hydrogen formation on amorphous silicate surfaces using temperature-programmed desorption (TPD). In these experiments beams of H and D atoms are irradiated on the surface of an amorphous silicate sample. The desorption rate of HD molecules is monitored using a mass spectrometer during a subsequent TPD run. The results are analyzed using rate equations and the activation energies of the processes leading to molecular hydrogen formation are obtained from the TPD data. We show that a model based on a single isotope provides the correct results for the activation energies for diffusion and desorption of H atoms. These results can thus be used to evaluate the formation rate of H_2 on dust grains under the actual conditions present in interstellar clouds.Comment: 30 pages, 1 table, 6 figures. Published versio

    Structure of the X-ray Emission from the Jet of 3C 273

    Get PDF
    We present images from five observations of the quasar 3C 273 with the Chandra X-ray Observatory. The jet has at least four distinct features which are not resolved in previous observations. The first knot in the jet (A1) is very bright in X-rays. Its X-ray spectrum is well fitted with a power law with alpha = 0.60 +/- 0.05. Combining this measurement with lower frequency data shows that a pure synchrotron model can fit the spectrum of this knot from 1.647 GHz to 5 keV (over nine decades in energy) with alpha = 0.76 +/- 0.02, similar to the X-ray spectral slope. Thus, we place a lower limit on the total power radiated by this knot of 1.5e43 erg/s; substantially more power may be emitted in the hard X-ray and gamma-ray bands. Knot A2 is also detected and is somewhat blended with knot B1. Synchrotron emission may also explain the X-ray emission but a spectral bend is required near the optical band. For knots A1 and B1, the X-ray flux dominates the emitted energy. For the remaining optical knots (C through H), localized X-ray enhancements that might correspond to the optical features are not clearly resolved. The position angle of the jet ridge line follows the optical shape with distinct, aperiodic excursions of +/-1 deg from a median value of -138.0deg. Finally, we find X-ray emission from the ``inner jet'' between 5 and 10" from the core.Comment: 10 pages, 5 figures; accepted for publication in the Astrophysical Journal Letters. For the color image, see fig1.ps or http://space.mit.edu/~hermanm/papers/3c273/fig1.jp

    Use of Laboratory Data to Model Interstellar Chemistry

    Get PDF
    Our laboratory research program is about the formation of molecules on dust grains analogues in conditions mimicking interstellar medium environments. Using surface science techniques, in the last ten years we have investigated the formation of molecular hydrogen and other molecules on different types of dust grain analogues. We analyzed the results to extract quantitative information on the processes of molecule formation on and ejection from dust grain analogues. The usefulness of these data lies in the fact that these results have been employed by theoreticians in models of the chemical evolution of ISM environments

    Formation of Molecular Hydrogen on Amorphous Water Ice: Influence of Morphology and Ultraviolet Exposure

    Get PDF
    In this paper, we report on the formation of molecular hydrogen on different types of amorphous water ice. We show that mass spectra of desorbing molecules upon formation are sensitive to the way in which ice is deposited on a cold substrate, to its thermal history, and to the action of UV photons. Implications that these results bear on H2 formation in dense quiescent clouds are presented and discussed

    New Chandra observations of the jet in 3C273. I. Softer X-ray than radio spectra and the X-ray emission mechanism

    Get PDF
    The jet in 3C273 is a high-power quasar jet with radio, optical and X-ray emission whose size and brightness allow a detailed study of the emission processes acting in it. We present deep Chandra observations of this jet and analyse the spectral properties of the jet emission from radio through X-rays. We find that the X-ray spectra are significantly softer than the radio spectra in all regions of the bright part of the jet except for the first bright "knot A", ruling out a model in which the X-ray emission from the entire jet arises from beamed inverse-Compton scattering of cosmic microwave background photons in a single-zone jet flow. Within two-zone jet models, we find that a synchrotron origin for the jet's X-rays requires fewer additional assumptions than an inverse-Compton model, especially if velocity shear leads to efficient particle acceleration in jet flows.Comment: 11 pages, 5 figures, emulateapj. Accepted by Ap

    Measurement of the Kinetic Energy of Hydrogen Molecules Desorbing from Amorphous Water Ice

    Get PDF
    A hydrogen molecule that is formed on an interstellar grain might retain some of the 4.48 eV of energy that is released in the recombination reaction of two hydrogen atoms. We set up an experiment to measure the translational (kinetic) energy of hydrogen molecules after they are formed on and are ejected from the surface of an interstellar dust grain analog. Here we report the first measurements of the kinetic energy of molecular deuterium as it leaves the surface of an amorphous water sample. The astrophysical implications of such measurements are discussed
    corecore