37 research outputs found

    What Happened, and Why: Toward an Understanding of Human Error Based on Automated Analyses of Incident Reports

    Get PDF
    The objective of the Aviation System Monitoring and Modeling (ASMM) project of NASA s Aviation Safety and Security Program was to develop technologies that will enable proactive management of safety risk, which entails identifying the precursor events and conditions that foreshadow most accidents. This presents a particular challenge in the aviation system where people are key components and human error is frequently cited as a major contributing factor or cause of incidents and accidents. In the aviation "world", information about what happened can be extracted from quantitative data sources, but the experiential account of the incident reporter is the best available source of information about why an incident happened. This report describes a conceptual model and an approach to automated analyses of textual data sources for the subjective perspective of the reporter of the incident to aid in understanding why an incident occurred. It explores a first-generation process for routinely searching large databases of textual reports of aviation incident or accidents, and reliably analyzing them for causal factors of human behavior (the why of an incident). We have defined a generic structure of information that is postulated to be a sound basis for defining similarities between aviation incidents. Based on this structure, we have introduced the simplifying structure, which we call the Scenario as a pragmatic guide for identifying similarities of what happened based on the objective parameters that define the Context and the Outcome of a Scenario. We believe that it will be possible to design an automated analysis process guided by the structure of the Scenario that will aid aviation-safety experts to understand the systemic issues that are conducive to human error

    Information Display System for Atypical Flight Phase

    Get PDF
    Method and system for displaying information on one or more aircraft flights, where at least one flight is determined to have at least one atypical flight phase according to specified criteria. A flight parameter trace for an atypical phase is displayed and compared graphically with a group of traces, for the corresponding flight phase and corresponding flight parameter, for flights that do not manifest atypicality in that phase

    Response of Sunflower (Helianthus annuus L.) Leaf Surface Defenses to Exogenous Methyl Jasmonate

    Get PDF
    Helianthus annuus, the common sunflower, produces a complex array of secondary compounds that are secreted into glandular trichomes, specialized structures found on leaf surfaces and anther appendages of flowers. The primary components of these trichome secretions are sesquiterpene lactones (STL), a diverse class of compounds produced abundantly by the plant family Compositae and believed to contribute to plant defense against herbivory. We treated wild and cultivated H. annuus accessions with exogenous methyl jasmonate, a plant hormone that mediates plant defense against insect herbivores and certain classes of fungal pathogens. The wild sunflower produced a higher density of glandular trichomes on its leaves than the cultivar. Comparison of the profiles of glandular trichome extracts obtained by liquid chromatography–mass spectroscopy (LC-MS) showed that wild and cultivated H. annuus were qualitatively similar in surface chemistry, although differing in the relative size and proportion of various compounds detected. Despite observing consistent transcriptional responses to methyl jasmonate treatment, we detected no significant effect on glandular trichome density or LC-MS profile in cultivated or wild sunflower, with wild sunflower exhibiting a declining trend in overall STL production and foliar glandular trichome density of jasmonate-treated plants. These results suggest that glandular trichomes and associated compounds may act as constitutive defenses or require greater levels of stimulus for induction than the observed transcriptional responses to exogenous jasmonate. Reduced defense investment in domesticated lines is consistent with predicted tradeoffs caused by selection for increased yield; future research will focus on the development of genetic resources to explicitly test the ecological roles of glandular trichomes and associated effects on plant growth and fitness

    Nanotools for Neuroscience and Brain Activity Mapping

    Get PDF
    Neuroscience is at a crossroads. Great effort is being invested into deciphering specific neural interactions and circuits. At the same time, there exist few general theories or principles that explain brain function. We attribute this disparity, in part, to limitations in current methodologies. Traditional neurophysiological approaches record the activities of one neuron or a few neurons at a time. Neurochemical approaches focus on single neurotransmitters. Yet, there is an increasing realization that neural circuits operate at emergent levels, where the interactions between hundreds or thousands of neurons, utilizing multiple chemical transmitters, generate functional states. Brains function at the nanoscale, so tools to study brains must ultimately operate at this scale, as well. Nanoscience and nanotechnology are poised to provide a rich toolkit of novel methods to explore brain function by enabling simultaneous measurement and manipulation of activity of thousands or even millions of neurons. We and others refer to this goal as the Brain Activity Mapping Project. In this Nano Focus, we discuss how recent developments in nanoscale analysis tools and in the design and synthesis of nanomaterials have generated optical, electrical, and chemical methods that can readily be adapted for use in neuroscience. These approaches represent exciting areas of technical development and research. Moreover, unique opportunities exist for nanoscientists, nanotechnologists, and other physical scientists and engineers to contribute to tackling the challenging problems involved in understanding the fundamentals of brain function
    corecore