2,765 research outputs found
Composing and Factoring Generalized Green's Operators and Ordinary Boundary Problems
We consider solution operators of linear ordinary boundary problems with "too
many" boundary conditions, which are not always solvable. These generalized
Green's operators are a certain kind of generalized inverses of differential
operators. We answer the question when the product of two generalized Green's
operators is again a generalized Green's operator for the product of the
corresponding differential operators and which boundary problem it solves.
Moreover, we show that---provided a factorization of the underlying
differential operator---a generalized boundary problem can be factored into
lower order problems corresponding to a factorization of the respective Green's
operators. We illustrate our results by examples using the Maple package
IntDiffOp, where the presented algorithms are implemented.Comment: 19 page
Ising pyrochlore magnets: Low temperature properties, ice rules and beyond
Pyrochlore magnets are candidates for spin-ice behavior. We present
theoretical simulations of relevance for the pyrochlore family R2Ti2O7 (R= rare
earth) supported by magnetothermal measurements on selected systems. By
considering long ranged dipole-dipole as well as short-ranged superexchange
interactions we get three distinct behaviours: (i) an ordered doubly degenerate
state, (ii) a highly disordered state with a broad transition to paramagnetism,
(iii) a partially ordered state with a sharp transition to paramagnetism. Thus
these competing interactions can induce behaviour very different from
conventional ``spin ice''. Closely corresponding behaviour is seen in the real
compounds---in particular Ho2Ti2O7 corresponds to case (iii) which has not been
discussed before, rather than (ii) as suggested earlier.Comment: 5 pages revtex, 4 figures; some revisions, additional data,
additional co-authors and a changed title. Basic ideas of paper remain the
same but those who downloaded the original version are requested to get this
more complete versio
High-spatial-resolution passive microwave sounding systems
During this period the emphasis was on the following: (1) further design, construction, and testing of the improved 54-GHz portion of the 54-118 GHz microwave temperature sounder (MTS) aircraft radiometer system in preparation for ER-2 observations in July 1991; and (2) final analysis and documentation of procedures for detecting and analyzing thermal waves in our 118-GHz MTS imagery. In addition, we have new unpublished measurements of dry-air attenuation at frequencies of 54 to 66 GHz and over a temperature range of 280K to 326K; these measurements should enable us to improve further our atmospheric transmittance models. It was further noted that the proposed SSMIS conical-scanning microwave spectrometer on the military DMSP Block 5D-3 spacecraft designed to measure stratospheric and mesospheric temperature profiles will be observing the Zeeman-split oxygen lines with sufficient spectral resolution that the changing Doppler shifts with view angle will substantially degrade the potential system performance unless remedied; this was briefly studied and documented
Destroying coherence in high temperature superconductors with current flow
The loss of single-particle coherence going from the superconducting state to
the normal state in underdoped cuprates is a dramatic effect that has yet to be
understood. Here, we address this issue by performing angle resolved
photoemission spectroscopy (ARPES) measurements in the presence of a transport
current. We find that the loss of coherence is associated with the development
of an onset in the resistance, in that well before the midpoint of the
transition is reached, the sharp peaks in the ARPES spectra are completely
suppressed. Since the resistance onset is a signature of phase fluctuations,
this implies that the loss of single-particle coherence is connected with the
loss of long-range phase coherence.Comment: 7 pages, 7 figure
- …