8 research outputs found

    Falls Predict Fractures Independently of FRAX Probability: A Meta-Analysis of the Osteoporotic Fractures in Men (MrOS) Study

    Get PDF
    Although prior falls are a well-established predictor of future fracture, there is currently limited evidence regarding the specific value of falls history in fracture risk assessment relative to that of other clinical risk factors and bone mineral density (BMD) measurement. We therefore investigated, across the three Osteoporotic Fractures in Men (MrOS) Study cohorts, whether past falls predicted future fracture independently of FRAX and whether these associations varied with age and follow-up time. Elderly men were recruited from MrOS Sweden, Hong Kong, and USA. Baseline data included falls history (over the preceding 12 months), clinical risk factors, BMD at femoral neck, and calculated FRAX probabilities. An extension of Poisson regression was used to investigate the associations between falls, FRAX probability, and incident fracture, adjusting for age, time since baseline, and cohort in base models; further models were used to investigate interactions with age and follow-up time. Random-effects meta-analysis was used to synthesize the individual country associations. Information on falls and FRAX probability was available for 4365 men in USA (mean age 73.5 years; mean follow-up 10.8 years), 1823 men in Sweden (mean age 75.4 years; mean follow-up 8.7 years), and 1669 men in Hong Kong (mean age 72.4 years; mean follow-up 9.8 years). Rates of past falls were similar at 20%, 16%, and 15%, respectively. Across all cohorts, past falls predicted incident fracture at any site (hazard ratio [HR] = 1.69; 95% confidence interval [CI] 1.49, 1.90), major osteoporotic fracture (MOF) (HR = 1.56; 95% CI 1.33, 1.83), and hip fracture (HR = 1.61; 95% CI 1.27, 2.05). Relationships between past falls and incident fracture remained robust after adjustment for FRAX probability: adjusted HR (95% CI) any fracture: 1.63 (1.45, 1.83); MOF: 1.51 (1.32, 1.73); and hip: 1.54 (1.21, 1.95). In conclusion, past falls predicted incident fracture independently of FRAX probability, confirming the potential value of falls history in fracture risk assessment. © 2017 The Authors. Journal of Bone and Mineral Research Published by Wiley Periodicals Inc

    Greater pQCT calf muscle density is associated with lower fracture risk, independent of FRAX, falls and BMD: a meta-analysis in the osteoporotic fractures in men (MrOS) study

    Get PDF
    We investigated the predictive performance of peripheral quantitative computed tomography (pQCT) measures of both calf muscle density (an established surrogate for muscle adiposity, with higher values indicating lower muscle adiposity and higher muscle quality) and size (cross-sectional area [CSA]) for incident fracture. pQCT (Stratec XCT2000/3000) measurements at the tibia were undertaken in Osteoporotic Fractures in Men (MrOS) United States (US), Hong Kong (HK), and Swedish (SW) cohorts. Analyses were by cohort and synthesized by meta-analysis. The predictive value for incident fracture outcomes, illustrated here for hip fracture (HF), using an extension of Poisson regression adjusted for age and follow-up time, was expressed as hazard ratio (HR) per standard deviation (SD) increase in exposure (HR/SD). Further analyses adjusted for femoral neck (fn) bone mineral density (BMD) T-score, Fracture Risk Assessment Tool (FRAX) 10-year fracture probability (major osteoporotic fracture) and prior falls. We studied 991 (US), 1662 (HK), and 1521 (SW) men, mean ± SD age 77.0 ± 5.1, 73.9 ± 4.9, 80 ± 3.4 years, followed for a mean ± SD 7.8 ± 2.2, 8.1 ± 2.3, 5.3 ± 2.0 years, with 31, 47, and 78 incident HFs, respectively. Both greater muscle CSA and greater muscle density were associated with a lower risk of incident HF [HR/SD: 0.84; 95% confidence interval [CI], 0.72–1.0 and 0.78; 95% CI, 0.66–0.91, respectively]. The pattern of associations was not materially changed by adjustment for prior falls or FRAX probability. In contrast, after inclusion of fn BMD T-score, the association for muscle CSA was no longer apparent (1.04; 95% CI, 0.88–1.24), whereas that for muscle density was not materially changed (0.69; 95% CI, 0.59–0.82). Findings were similar for osteoporotic fractures. pQCT measures of greater calf muscle density and CSA were both associated with lower incidence of fractures in older men, but only muscle density remained an independent risk factor for fracture after accounting for fn BMD. These findings demonstrate a complex interplay between measures of bone, muscle size, and quality, in determining fracture risk. © 2022 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research

    Recent sarcopenia definitions—prevalence, agreement and mortality associations among men: findings from population‐based cohorts

    Get PDF
    Background The 2019 European Working Group on Sarcopenia in Older People (EWGSOP2) and the Sarcopenia Definitions and Outcomes Consortium (SDOC) have recently proposed sarcopenia definitions. However, comparisons of the performance of these approaches in terms of thresholds employed, concordance in individuals and prediction of important health-related outcomes such as death are limited. We addressed this in a large multinational assembly of cohort studies that included information on lean mass, muscle strength, physical performance and health outcomes. Methods White men from the Health Aging and Body Composition (Health ABC) Study, Osteoporotic Fractures in Men (MrOS) Study cohorts (Sweden, USA), the Hertfordshire Cohort Study (HCS) and the Sarcopenia and Physical impairment with advancing Age (SarcoPhAge) Study were analysed. Appendicular lean mass (ALM) was ascertained using DXA; muscle strength by grip dynamometry; and usual gait speed over courses of 2.4–6 m. Deaths were recorded and verified. Definitions of sarcopenia were as follows: EWGSOP2 (grip strength <27 kg and ALM index <7.0 kg/m2), SDOC (grip strength <35.5 kg and gait speed <0.8 m/s) and Modified SDOC (grip strength <35.5 kg and gait speed <1.0 m/s). Cohen's kappa statistic was used to assess agreement between original definitions (EWGSOP2 and SDOC). Presence versus absence of sarcopenia according to each definition in relation to mortality risk was examined using Cox regression with adjustment for age and weight; estimates were combined across cohorts using random-effects meta-analysis. Results Mean (SD) age of participants (n = 9170) was 74.3 (4.9) years; 5929 participants died during a mean (SD) follow-up of 12.1 (5.5) years. The proportion with sarcopenia according to each definition was EWGSOP2 (1.1%), SDOC (1.7%) and Modified SDOC (5.3%). Agreement was weak between EWGSOP2 and SDOC (Îș = 0.17). Pooled hazard ratios (95% CI) for mortality for presence versus absence of each definition were EWGSOP2 [1.76 (1.42, 2.18), I2: 0.0%]; SDOC [2.75 (2.28, 3.31), I2: 0.0%]; and Modified SDOC [1.93 (1.54, 2.41), I2: 58.3%]. Conclusions There was low prevalence and poor agreement among recent sarcopenia definitions in community-dwelling cohorts of older white men. All indices of sarcopenia were associated with mortality. The strong relationship between sarcopenia and mortality, regardless of the definition, illustrates that identification of appropriate management and lifecourse intervention strategies for this condition is of paramount importance

    FRAX predicts incident falls in elderly men: findings from MrOs

    No full text
    Falls and fractures share several common risk factors. Although past falls is not included as an input variable in the FRAX calculator, we demonstrate that FRAX probability predicts risk of incident falls in the MrOs Sweden cohort.IntroductionAlthough not included in the FRAXÂź algorithm, it is possible that increased falls risk is partly dependent on other risk factors that are incorporated into FRAX. The aim of the present study was to determine whether fracture probability generated by FRAX might also predict risk of incident falls and the extent that a falls history would add value to FRAX.MethodsWe studied the relationship between FRAX probabilities and risk of falls in 1836 elderly men recruited to the MrOS study, a population-based prospective cohort of men from Sweden. Baseline data included falls history, clinical risk factors, bone mineral density (BMD) at femoral neck, and calculated FRAX probabilities. Incident falls were captured during an average of 1.8 years of follow-up. An extension of Poisson regression was used to investigate the relationship between FRAX, other risk variables, and the time-to-event hazard function of falls. All associations were adjusted for age and time since baseline.ResultsAt enrolment, 15.5 % of the men had fallen during the preceding 12 months (past falls) and 39 % experienced one or more falls during follow-up (incident falls). The risk of incident falls increased with increasing FRAX probabilities at baseline (hazard ratio (HR) per standard deviation (SD), 1.16; 95 % confidence interval (95%CI), 1.06 to 1.26). The association between incident falls and FRAX probability remained after adjustment for past falls (HR per SD, 1.12; 95%CI, 1.03 to 1.22). High compared with low baseline FRAX score (&gt;15 vs &lt;15 % probability of major osteoporotic fracture) was strongly predictive of increased falls risk (HR, 1.64; 95%CI, 1.36 to 1.97) and remained stable with time. Whereas past falls were a significant predictor of incident falls (HR, 2.75; 95%CI, 2.32 to 3.25), even after adjustment for FRAX, the hazard ratio decreased markedly with increasing follow-up time.ConclusionsAlthough falls are not included as an input variable, FRAX captures a component of risk for future falls and outperforms falls history with an extended follow-up time.<br/

    Sarcopenia definitions as predictors of fracture risk independent of FRAX¼, falls, and BMD in the osteoporotic fractures in men (MrOS) study: a meta‐analysis

    Get PDF
    Dual‐energy X‐ray absorptiometry (DXA)‐derived appendicular lean mass/height2 (ALM/ht2) is the most commonly used estimate of muscle mass in the assessment of sarcopenia, but its predictive value for fracture is substantially attenuated by femoral neck (fn) bone mineral density (BMD). We investigated predictive value of 11 sarcopenia definitions for incident fracture, independent of fnBMD, fracture risk assessment tool (FRAXÂź) probability, and prior falls, using an extension of Poisson regression in US, Sweden, and Hong Kong Osteoporois Fractures in Men Study (MrOS) cohorts. Definitions tested were those of Baumgartner and Delmonico (ALM/ht2 only), Morley, the International Working Group on Sarcopenia, European Working Group on Sarcopenia in Older People (EWGSOP1 and 2), Asian Working Group on Sarcopenia, Foundation for the National Institutes of Health (FNIH) 1 and 2 (using ALM/body mass index [BMI], incorporating muscle strength and/or physical performance measures plus ALM/ht2), and Sarcopenia Definitions and Outcomes Consortium (gait speed and grip strength). Associations were adjusted for age and time since baseline and reported as hazard ratio (HR) for first incident fracture, here major osteoporotic fracture (MOF; clinical vertebral, hip, distal forearm, proximal humerus). Further analyses adjusted additionally for FRAX‐MOF probability (n = 7531; calculated ± fnBMD), prior falls (y/n), or fnBMD T‐score. Results were synthesized by meta‐analysis. In 5660 men in USA, 2764 Sweden and 1987 Hong Kong (mean ages 73.5, 75.4, and 72.4 years, respectively), sarcopenia prevalence ranged from 0.5% to 35%. Sarcopenia status, by all definitions except those of FNIH, was associated with incident MOF (HR = 1.39 to 2.07). Associations were robust to adjustment for prior falls or FRAX probability (without fnBMD); adjustment for fnBMD T‐score attenuated associations. EWGSOP2 severe sarcopenia (incorporating chair stand time, gait speed, and grip strength plus ALM) was most predictive, albeit at low prevalence, and appeared only modestly influenced by inclusion of fnBMD. In conclusion, the predictive value for fracture of sarcopenia definitions based on ALM is reduced by adjustment for fnBMD but strengthened by additional inclusion of physical performance measures

    Normative Functional Fitness Standards and Trends of Portuguese Older Adults: Cross-Cultural Comparisons

    No full text
    This cross-sectional study was designed to develop normative functional fitness standards for the Portuguese older adults, to analyze age and gender patterns of decline, to compare the fitness level of Portuguese older adults with that of older adults in other countries, and to evaluate the fitness level of Portuguese older adults relative to recently published criterion fitness standards associated with maintaining physical independence. A sample of 4,712 independent-living older adults, age 65-103 yr, was evaluated using the Senior Fitness Test battery. Age-group normative fitness scores are reported for the 10th, 25th, 50th, 75th, and 90th percentiles. Results indicate that both women and men experience age-related losses in all components of functional fitness, with their rate of decline being greater than that observed in other populations, a trend which may cause Portuguese older adults to be at greater risk for loss of independence in later years. These newly established normative standards make it possible to assess individual fitness level and provide a basis for implementing population-wide health strategies to counteract early loss of independence

    References

    No full text
    corecore