74 research outputs found

    Phase-locked mutants of Mycoplasma agalactiae: defining the molecular switch of high-frequency Vpma antigenic variation

    Get PDF
    Mycoplasma agalactiae, an important pathogen of small ruminants, exhibits antigenic diversity by switching the expression of multiple surface lipoproteins called Vpmas (Variable proteins of M. agalactiae). Although phase variation has been shown to play important roles in many hostā€“pathogen interactions, the biological significance and the mechanism of Vpma oscillations remain largely unclear. Here, we demonstrate that all six Vpma proteins are expressed in the type strain PG2 and all undergo phase variation at an unusually high frequency. Furthermore, targeted gene disruption of the xer1 gene encoding a putative site-specific recombinase adjacent to the vpma locus was accomplished via homologous recombination using a replicon-based vector. Inactivation of xer1 abolished further Vpma switching and the ā€˜phase-lockedā€™ mutants (PLMs) continued to steadily express only a single Vpma product. Complementation of the wild-type xer1 gene in PLMs restored Vpma phase variation thereby proving that Xer1 is essential for vpma inversions. The study is not only instrumental in enhancing our ability to understand the role of Vpmas in M. agalactiae infections but also provides useful molecular approaches to study potential disease factors in other ā€˜difficult-to-manipulateā€™ mycoplasmas

    Sheep Infection Trials with ā€˜Phase-Lockedā€™ Vpma Expression Variants of Mycoplasma agalactiaeā€”Towards Elucidating the Role of a Multigene Family Encoding Variable Surface Lipoproteins in Infection and Disease

    Get PDF
    The significance of large multigene families causing high-frequency surface variations in mycoplasmas is not well-understood. Previously, VpmaY and VpmaU clonal variants of the Vpma family of lipoproteins of M. agalactiae were compared via experimental sheep infections using the two corresponding ā€˜Phase-Locked Mutantsā€™. However, nothing is known about the infectivity of the remaining four Vpma expression variants VpmaX, VpmaW, VpmaZ and VpmaV as they were never evaluated in vivo. Here, in vivo infection and disease progression of all six Vpma expressers constituting the Vpma family of type strain PG2 were compared using the corresponding xer1-disrupted PLMs expressing single well-characterized Vpmas. Each of the six PLMs were separately evaluated using the intramammary sheep infection model along with the control phase-variable wildtype strain PG2. Thorough bacteriological, pathological and clinical examinations were performed, including assessment of milk quality, quantity and somatic cell counts. Altogether, the results indicated that the inability to vary the Vpma expression phase does not hamper the initiation of infection leading to mastitis for all six PLMs, except for PLMU, which showed a defect in host colonization and multiplication for the first 24 h p.i. and pathological/bacteriological analysis indicated a higher potential for systemic spread for PLMV and PLMX. This is the first study in which all isogenic expression variants of a large mycoplasma multigene family are tested in the natural host

    Rapid detection of Mycobacterium avium subsp. paratuberculosis from cattle and zoo animals by Nested PCR

    Get PDF
    Paratuberculosis, caused by Mycobacterium avium subsp. paratuberculosis, a suspect causative agent of Crohn's disease in man, is an emerging disease of international proportions affecting all ruminants. Early stage detection of Mycobacterium avium subsp. paratuberculosis infection would accelerate progress in control programmes. Despite new molecular approaches the standard diagnostic test for this disease is at present still the time consuming classic isolation procedure. Therefore, alternative diagnostic tests such as PCR, are needed for quick detection of infected animals. In this study, the conventional enrichment and isolation procedure and two IS900-based PCR methods for detection of Mycobactrium avium subsp. paratuberculosis in clinical samples from zoo animals and cattle were compared. A total number of 48 different clinical specimens obtained from animals suspected of having paratuberculosis were examined. The samples included faeces (n = 15) and organ tissues (n = 33). Of the faecal specimens two were identified as positive by nested PCR, whereas none was positive by single PCR or by culture. 28 organ specimens were found positive by culture. Mycobactrium avium subsp. paratuberculosis DNA was detected by nested PCR in 82% of the organ specimens identified positive by culture (23 samples) as opposed to 57% by single PCR (16 samples). Nested PCR also identified two positive samples that were not detected by either culture or single PCR. These findings show the great potential of nested PCR as a useful tool for the rapid diagnosis of paratuberculosis in animals

    Novel role of Vpmas as major adhesins of Mycoplasma agalactiae mediating differential cell adhesion and invasion of Vpma expression variants

    No full text
    Mycoplasma agalactiae exhibits antigenic variation by switching the expression of multiple surface lipoproteins called Vpmas. Although implicated to have a significant influence on the pathogenicity, their exact role in pathogen-host interactions has not been investigated so far. Initial attachment to host cells is regarded as one of the most important steps for colonization but this pathogen lacks the typical mycoplasma attachment organelle. The aim of this study was to determine the role of Vpmas in adhesion of M. agalactiae to host cells. ā€˜Phase-Lockedā€™ Mutants (PLMs) steadily expressing single well-characterized Vpma lipoproteins served as ideal tools to evaluate the role of each of the six Vpmas in cytadhesion, which was otherwise not possible due to the high-frequency switching of Vpmas in the wildtype strain PG2. Using in vitro adhesion assays with HeLa and sheep mammary epithelial (MECs) and stromal (MSCs) cells, we could demonstrate differences in the adhesion capabilities of each of the six PLMs compared to the wildtype strain. The PLMV mutant expressing VpmaV exhibited the highest adhesion rate, whereas PLMU, which expresses VpmaU showed the lowest adhesion values explaining the reduced in vivo fitness of PLMU in sheep during experimental intramammary and conjunctival infections. Furthermore, adhesion inhibition assays using Vpma-specific polyclonal antisera were performed to confirm the role of Vpmas in M. agalactiae cytadhesion. This led to a significant decrease (p < 0.05) in the adhesion percentage of each PLM. Immunofluorescence staining of TX-114 phase proteins extracted from each PLM showed binding of the respective Vpma to HeLa cells and MECs proving the direct role of Vpmas in cytadhesion. Furthermore, as adhesion is a prerequisite for cell invasion, the ability of the six PLMs to invade HeLa cells was also evaluated using the gentamicin protection assay. The results showed a strong correlation between the adhesion rates and invasion frequencies of the individual PLMs. This is the first report that describes a novel function of Vpma proteins in cell adhesion and invasion. Besides the variability of these proteins causing surface antigenic variation, the newly identified phenotypes are likely to play critical roles in the pathogenicity potential of this ruminant pathogen

    Surface Diversity in Mycoplasma agalactiae Is Driven by Site-Specific DNA Inversions within the vpma Multigene Locus

    No full text
    The ruminant pathogen Mycoplasma agalactiae possesses a family of abundantly expressed variable surface lipoproteins called Vpmas. Phenotypic switches between Vpma members have previously been correlated with DNA rearrangements within a locus of vpma genes and are proposed to play an important role in disease pathogenesis. In this study, six vpma genes were characterized in the M. agalactiae type strain PG2. All vpma genes clustered within an 8-kb region and shared highly conserved 5ā€² untranslated regions, lipoprotein signal sequences, and short N-terminal sequences. Analyses of the vpma loci from consecutive clonal isolates showed that vpma DNA rearrangements were site specific and that cleavage and strand exchange occurred within a minimal region of 21 bp located within the 5ā€² untranslated region of all vpma genes. This process controlled expression of vpma genes by effectively linking the open reading frame (ORF) of a silent gene to a unique active promoter sequence within the locus. An ORF (xer1) immediately adjacent to one end of the vpma locus did not undergo rearrangement and had significant homology to a distinct subset of genes belonging to the Ī» integrase family of site-specific xer recombinases. It is proposed that xer1 codes for a site-specific recombinase that is not involved in chromosome dimer resolution but rather is responsible for the observed vpma-specific recombination in M. agalactiae
    • ā€¦
    corecore