8,402 research outputs found

    Dimensional crossover of the fundamental-measure functional for parallel hard cubes

    Get PDF
    We present a regularization of the recently proposed fundamental-measure functional for a mixture of parallel hard cubes. The regularized functional is shown to have right dimensional crossovers to any smaller dimension, thus allowing to use it to study highly inhomogeneous phases (such as the solid phase). Furthermore, it is shown how the functional of the slightly more general model of parallel hard parallelepipeds can be obtained using the zero-dimensional functional as a generating functional. The multicomponent version of the latter system is also given, and it is suggested how to reformulate it as a restricted-orientation model for liquid crystals. Finally, the method is further extended to build a functional for a mixture of parallel hard cylinders.Comment: 4 pages, no figures, uses revtex style files and multicol.sty, for a PostScript version see http://dulcinea.uc3m.es/users/cuesta/cross.p

    Connectivity and genus in three dimensions

    Get PDF
    Algorithms for labeling, counting, and computing connected objects in binary three dimensional arra

    Lattice density-functional theory of surface melting: the effect of a square-gradient correction

    Full text link
    I use the method of classical density-functional theory in the weighted-density approximation of Tarazona to investigate the phase diagram and the interface structure of a two-dimensional lattice-gas model with three phases -- vapour, liquid, and triangular solid. While a straightforward mean-field treatment of the interparticle attraction is unable to give a stable liquid phase, the correct phase diagram is obtained when including a suitably chosen square-gradient term in the system grand potential. Taken this theory for granted, I further examine the structure of the solid-vapour interface as the triple point is approached from low temperature. Surprisingly, a novel phase (rather than the liquid) is found to grow at the interface, exhibiting an unusually long modulation along the interface normal. The conventional surface-melting behaviour is recovered only by artificially restricting the symmetries being available to the density field.Comment: 16 pages, 6 figure

    Noether symmetries, energy-momentum tensors and conformal invariance in classical field theory

    Full text link
    In the framework of classical field theory, we first review the Noether theory of symmetries, with simple rederivations of its essential results, with special emphasis given to the Noether identities for gauge theories. Will this baggage on board, we next discuss in detail, for Poincar\'e invariant theories in flat spacetime, the differences between the Belinfante energy-momentum tensor and a family of Hilbert energy-momentum tensors. All these tensors coincide on shell but they split their duties in the following sense: Belinfante's tensor is the one to use in order to obtain the generators of Poincar\'e symmetries and it is a basic ingredient of the generators of other eventual spacetime symmetries which may happen to exist. Instead, Hilbert tensors are the means to test whether a theory contains other spacetime symmetries beyond Poincar\'e. We discuss at length the case of scale and conformal symmetry, of which we give some examples. We show, for Poincar\'e invariant Lagrangians, that the realization of scale invariance selects a unique Hilbert tensor which allows for an easy test as to whether conformal invariance is also realized. Finally we make some basic remarks on metric generally covariant theories and classical field theory in a fixed curved bakground.Comment: 31 pa

    Phase behaviour of additive binary mixtures in the limit of infinite asymmetry

    Get PDF
    We provide an exact mapping between the density functional of a binary mixture and that of the effective one-component fluid in the limit of infinite asymmetry. The fluid of parallel hard cubes is thus mapped onto that of parallel adhesive hard cubes. Its phase behaviour reveals that demixing of a very asymmetric mixture can only occur between a solvent-rich fluid and a permeated large particle solid or between two large particle solids with different packing fractions. Comparing with hard spheres mixtures we conclude that the phase behaviour of very asymmetric hard-particle mixtures can be determined from that of the large component interacting via an adhesive-like potential.Comment: Full rewriting of the paper (also new title). 4 pages, LaTeX, uses revtex, multicol, epsfig, and amstex style files, to appear in Phys. Rev. E (Rapid Comm.
    corecore