1,644 research outputs found
Lattice density-functional theory of surface melting: the effect of a square-gradient correction
I use the method of classical density-functional theory in the
weighted-density approximation of Tarazona to investigate the phase diagram and
the interface structure of a two-dimensional lattice-gas model with three
phases -- vapour, liquid, and triangular solid. While a straightforward
mean-field treatment of the interparticle attraction is unable to give a stable
liquid phase, the correct phase diagram is obtained when including a suitably
chosen square-gradient term in the system grand potential. Taken this theory
for granted, I further examine the structure of the solid-vapour interface as
the triple point is approached from low temperature. Surprisingly, a novel
phase (rather than the liquid) is found to grow at the interface, exhibiting an
unusually long modulation along the interface normal. The conventional
surface-melting behaviour is recovered only by artificially restricting the
symmetries being available to the density field.Comment: 16 pages, 6 figure
A new virtual ring-based system matrix generator for iterative image reconstruction in high resolution small volume PET systems
© 2015 Institute of Physics and Engineering in Medicine. A common approach to improving the spatial resolution of small animal PET scanners is to reduce the size of scintillation crystals and/or employ high resolution pixellated semiconductor detectors. The large number of detector elements results in the system matrix - an essential part of statistical iterative reconstruction algorithms - becoming impractically large. In this paper, we propose a methodology for system matrix modelling which utilises a virtual single-layer detector ring to greatly reduce the size of the system matrix without sacrificing precision. Two methods for populating the system matrix are compared; the first utilises a geometrically-derived system matrix based on Siddon's ray tracer method with the addition of an accurate detector response function, while the second uses Monte Carlo simulation to populate the system matrix. The effectiveness of both variations of the proposed technique is demonstrated via simulations of PETiPIX, an ultra high spatial resolution small animal PET scanner featuring high-resolution DoI capabilities, which has previously been simulated and characterised using classical image reconstruction methods. Compression factors of and are achieved using this methodology for the system matrices produced using the geometric and Monte Carlo-based approaches, respectively, requiring a total of 0.5-1.2 GB of memory-resident storage. Images reconstructed from Monte Carlo simulations of various point source and phantom models, produced using system matrices generated via both geometric and simulation methods, are used to evaluate the quality of the resulting system matrix in terms of achievable spatial resolution and the CRC, CoV and CW-SSIM index image quality metrics. The Monte Carlo-based system matrix is shown to provide the best image quality at the cost of substantial one-off computational effort and a lower (but still practical) compression factor. Finally, a straightforward extension of the virtual ring method to a three dimensional virtual cylinder is demonstrated using a 3D DoI PET scanner
The Geant4-DNA project
The Geant4-DNA project proposes to develop an open-source simulation software
based and fully included in the general-purpose Geant4 Monte Carlo simulation
toolkit. The main objective of this software is to simulate biological damages
induced by ionising radiation at the cellular and sub-cellular scale. This
project was originally initiated by the European Space Agency for the
prediction of deleterious effects of radiation that may affect astronauts
during future long duration space exploration missions. In this paper, the
Geant4-DNA collaboration presents an overview of the whole ongoing project,
including its most recent developments already available in the last Geant4
public release (9.3 BETA), as well as an illustration example simulating the
direct irradiation of a chromatin fibre. Expected extensions involving several
research domains, such as particle physics, chemistry and cellular and
molecular biology, within a fully interdiciplinary activity of the Geant4
collaboration are also discussed.Comment: presented by S. Incerti at the ASIA SIMULATION CONFERENCE 2009,
October 7-9, 2009, Ritsumeikan University, Shiga, Japa
Thomas Decomposition of Algebraic and Differential Systems
In this paper we consider disjoint decomposition of algebraic and non-linear
partial differential systems of equations and inequations into so-called simple
subsystems. We exploit Thomas decomposition ideas and develop them into a new
algorithm. For algebraic systems simplicity means triangularity, squarefreeness
and non-vanishing initials. For differential systems the algorithm provides not
only algebraic simplicity but also involutivity. The algorithm has been
implemented in Maple
Three Kinds of Special Relativity via Inverse Wick Rotation
Since the special relativity can be viewed as the physics in an inverse Wick
rotation of 4-d Euclid space, which is at almost equal footing with the 4-d
Riemann/Lobachevski space, there should be important physics in the inverse
Wick rotation of 4-d Riemann/Lobachevski space. Thus, there are three kinds of
special relativity in de Sitter/Minkowski/anti-de Sitter space at almost equal
footing, respectively. There is an instanton tunnelling scenario in the
Riemann-de Sitter case that may explain why \La be positive and link with the
multiverse.Comment: 3 pages, no figures, to appear in Chin. Phys. Let
The OscSNS White Paper
There exists a need to address and resolve the growing evidence for
short-baseline neutrino oscillations and the possible existence of sterile
neutrinos. Such non-standard particles require a mass of eV/c, far
above the mass scale associated with active neutrinos, and were first invoked
to explain the LSND appearance signal.
More recently, the MiniBooNE experiment has reported a excess of
events in antineutrino mode consistent with neutrino oscillations and with the
LSND antineutrino appearance signal. MiniBooNE also observed a
excess of events in their neutrino mode data. Lower than expected
neutrino-induced event rates using calibrated radioactive sources and nuclear
reactors can also be explained by the existence of sterile neutrinos. Fits to
the world's neutrino and antineutrino data are consistent with sterile
neutrinos at this eV/c mass scale, although there is some tension
between measurements from disappearance and appearance experiments. In addition
to resolving this potential major extension of the Standard Model, the
existence of sterile neutrinos will impact design and planning for all future
neutrino experiments. It should be an extremely high priority to conclusively
establish if such unexpected light sterile neutrinos exist. The Spallation
Neutron Source (SNS) at Oak Ridge National Laboratory, built to usher in a new
era in neutron research, provides a unique opportunity for US science to
perform a definitive world-class search for sterile neutrinos.Comment: This white paper is submitted as part of the SNOWMASS planning
proces
Which mechanism underlies the water-like anomalies in core-softened potentials?
Using molecular dynamics simulations we investigate the thermodynamic of
particles interacting with a continuous and a discrete versions of a
core-softened (CS) intermolecular potential composed by a repulsive shoulder.
Dynamic and structural properties are also analyzed by the simulations. We show
that in the continuous version of the CS potential the density at constant
pressure has a maximum for a certain temperature. Similarly the diffusion
constant, , at a constant temperature has a maximum at a density
and a minimum at a density
, and structural properties are also
anomalous. For the discrete CS potential none of these anomalies are observed.
The absence of anomalies in the discrete case and its presence in the
continuous CS potential are discussed in the framework of the excess entropy.Comment: 8 page
Relationship between Structure, Entropy and Diffusivity in Water and Water-like Liquids
Anomalous behaviour of the excess entropy () and the associated scaling
relationship with diffusivity are compared in liquids with very different
underlying interactions but similar water-like anomalies: water (SPC/E and
TIP3P models), tetrahedral ionic melts (SiO and BeF) and a fluid with
core-softened, two-scale ramp (2SRP) interactions. We demonstrate the presence
of an excess entropy anomaly in the two water models. Using length and energy
scales appropriate for onset of anomalous behaviour, the density range of the
excess entropy anomaly is shown to be much narrower in water than in ionic
melts or the 2SRP fluid. While the reduced diffusivities () conform to the
excess entropy scaling relation, for all the systems
(Y. Rosenfeld, Phys. Rev. A {\bf 1977}, {\it 15}, 2545), the exponential
scaling parameter, , shows a small isochore-dependence in the case of
water. Replacing by pair correlation-based approximants accentuates the
isochore-dependence of the diffusivity scaling. Isochores with similar
diffusivity scaling parameters are shown to have the temperature dependence of
the corresponding entropic contribution. The relationship between diffusivity,
excess entropy and pair correlation approximants to the excess entropy are very
similar in all the tetrahedral liquids.Comment: 24 pages, 4 figures, to be published in Journal of Physical Chemistry
BrachyView, A novel inbody imaging system for HDR prostate brachytherapy: Design and Monte Carlo feasibility study
Purpose: High dose rate (HDR) brachytherapy is a form of radiation therapy for treating prostate cancer whereby a high activity radiation source is moved between predefined positions inside applicators inserted within the treatment volume. Accurate positioning of the source is essential in delivering the desired dose to the target area while avoiding radiation injury to the surrounding tissue. In this paper, HDR BrachyView, a novel inbody dosimetric imaging system for real time monitoring and verification of the radioactive seed position in HDR prostate brachytherapy treatment is introduced. The current prototype consists of a 15 à 60 mm2 silicon pixel detector with a multipinhole tungsten collimator placed 6.5 mm above the detector. Seven identical pinholes allow full imaging coverage of the entire treatment volume. The combined pinhole and pixel sensor arrangement is geometrically designed to be able to resolve the three-dimensional location of the source. The probe may be rotated to keep the whole prostate within the transverse plane. The purpose of this paper is to demonstrate the efficacy of the design through computer simulation, and to estimate the accuracy in resolving the source position (in detector plane and in 3D space) as part of the feasibility study for the BrachyView project. Methods: Monte Carlo simulations were performed using the GEANT4 radiation transport model, with a 192Ir source placed in different locations within a prostate phantom. A geometrically accurate model of the detector and collimator were constructed. Simulations were conducted with a single pinhole to evaluate the pinhole design and the signal to background ratio obtained. Second, a pair of adjacent pinholes were simulated to evaluate the error in calculated source location. Results: Simulation results show that accurate determination of the true source position is easily obtainable within the typical one second source dwell time. The maximum error in the estimated projection position was found to be 0.95 mm in the imaging (detector) plane, resulting in a maximum source positioning estimation error of 1.48 mm. Conclusions: HDR BrachyView is a feasible design for real-time source tracking in HDR prostate brachytherapy. It is capable of resolving the source position within a subsecond dwell time. In combination with anatomical information obtained from transrectal ultrasound imaging, HDR BrachyView adds a significant quality assurance capability to HDR brachytherapy treatment systems. © 2013 American Association of Physicists in Medicine
Targeting quiescent leukemic stem cells using second generation autophagy inhibitors
In chronic myeloid leukemia (CML), tyrosine kinase inhibitor (TKI) treatment induces autophagy that promotes survival and TKI-resistance in leukemic stem cells (LSCs). In clinical studies hydroxychloroquine (HCQ), the only clinically approved autophagy inhibitor, does not consistently inhibit autophagy in cancer patients, so more potent autophagy inhibitors are needed. We generated a murine model of CML in which autophagic flux can be measured in bone marrow-located LSCs. In parallel, we use cell division tracing, phenotyping of primary CML cells, and a robust xenotransplantation model of human CML, to investigate the effect of Lys05, a highly potent lysosomotropic agent, and PIK-III, a selective inhibitor of VPS34, on the survival and function of LSCs. We demonstrate that long-term haematopoietic stem cells (LT-HSCs: LinâSca-1+c-kit+CD48âCD150+) isolated from leukemic mice have higher basal autophagy levels compared with non-leukemic LT-HSCs and more mature leukemic cells. Additionally, we present that while HCQ is ineffective, Lys05-mediated autophagy inhibition reduces LSCs quiescence and drives myeloid cell expansion. Furthermore, Lys05 and PIK-III reduced the number of primary CML LSCs and target xenografted LSCs when used in combination with TKI treatment, providing a strong rationale for clinical use of second generation autophagy inhibitors as a novel treatment for CML patients with LSC persistence
- âŠ