1,283 research outputs found

    Experimental ischemia–reperfusion: biases and myths—the proximal vs. distal hypoxic tubular injury debate revisited

    Get PDF
    Although the understanding of processes associated with hypoxic tubular cell injury has remarkably improved, controversies remain regarding the appropriateness of various animal models to the human syndrome of acute kidney injury (AKI). We herein compare available experimental models of hypoxic acute kidney damage, which differ both conceptually and morphologically in the distribution of tubular cell injury. Tubular segment types differ in their capacity to mount hypoxia-adaptive responses, mediated by hypoxia-inducible factors (HIFs), and in cell type–specific molecules shed into the urine, which may serve as early biomarkers for renal damage. These differences may be of value in the perception of the human AKI, its detection, and prevention

    Solving airline operations problems using specialized agents in a distributed multi-agent system

    Get PDF
    An airline schedule very rarely operates as planned. Problems related with aircrafts, crew members and passengers are common and the actions towards the solution of these problems are usually known as operations recovery. The Airline Operations Control Center (AOCC) tries to solve these problems with the minimum cost and satisfying all the required rules. In this paper we present the implementation of a Distributed Multi-Agent System (MAS) representing the existing roles in an AOCC, This MAS deals with several operational bases and for each type of operation problems it has several specialized software agents that implement different algorithms (heuristic, AI, OR, etc.), competing to find the best solution for each problem. We present a real case study taken from an AOCC where a crew recovery problem is solved. Computational results using a real airline schedule are presented, including a comparison with a solution for the same problem found by the human operators in the AOCC. We show that, even in simple problems and when comparing with solutions found by human operators, it is possible to find valid solutions, in less time and with a smaller cost

    Single-shot carrier-envelope-phase measurement in ambient air

    No full text
    The ability to measure and control the carrier envelope phase (CEP) of few-cycle laser pulses is of paramount importance for both frequency metrology and attosecond science. Here, we present a phase meter relying on the CEP-dependent photocurrents induced by circularly polarized few-cycle pulses focused between electrodes in ambient air. The new device facilitates compact single-shot, CEP measurements under ambient conditions and promises CEP tagging at repetition rates orders of magnitude higher than most conventional CEP detection schemes as well as straightforward implementation at longer wavelengths

    Microresonator solitons for massively parallel coherent optical communications

    Full text link
    Optical solitons are waveforms that preserve their shape while propagating, relying on a balance of dispersion and nonlinearity. Soliton-based data transmission schemes were investigated in the 1980s, promising to overcome the limitations imposed by dispersion of optical fibers. These approaches, however, were eventually abandoned in favor of wavelength-division multiplexing (WDM) schemes that are easier to implement and offer improved scalability to higher data rates. Here, we show that solitons may experience a comeback in optical communications, this time not as a competitor, but as a key element of massively parallel WDM. Instead of encoding data on the soliton itself, we exploit continuously circulating dissipative Kerr solitons (DKS) in a microresonator. DKS are generated in an integrated silicon nitride microresonator by four-photon interactions mediated by Kerr nonlinearity, leading to low-noise, spectrally smooth and broadband optical frequency combs. In our experiments, we use two interleaved soliton Kerr combs to transmit a data stream of more than 50Tbit/s on a total of 179 individual optical carriers that span the entire telecommunication C and L bands. Equally important, we demonstrate coherent detection of a WDM data stream by using a pair of microresonator Kerr soliton combs - one as a multi-wavelength light source at the transmitter, and another one as a corresponding local oscillator (LO) at the receiver. This approach exploits the scalability advantages of microresonator soliton comb sources for massively parallel optical communications both at the transmitter and receiver side. Taken together, the results prove the significant potential of these sources to replace arrays of continuous-wave lasers in high-speed communications.Comment: 10 pages, 3 figure

    Tunable 2D Electron- and 2D Hole States Observed at Fe/SrTiO3_3 Interfaces

    Full text link
    Oxide electronics provide the key concepts and materials for enhancing silicon-based semiconductor technologies with novel functionalities. However, a basic but key property of semiconductor devices still needs to be unveiled in its oxidic counterparts: the ability to set or even switch between two types of carriers - either negatively (n) charged electrons or positively (p) charged holes. Here, we provide direct evidence for individually emerging n- or p-type 2D band dispersions in STO-based heterostructures using resonant photoelectron spectroscopy. The key to tuning the carrier character is the oxidation state of an adjacent Fe-based interface layer: For Fe and FeO, hole bands emerge in the empty band gap region of STO due to hybridization of Ti and Fe-derived states across the interface, while for Fe3_3O4_4 overlayers, an 2D electron system is formed. Unexpected oxygen vacancy characteristics arise for the hole-type interfaces, which as of yet had been exclusively assigned to the emergence of 2DESs. In general, this finding opens up the possibility to straightforwardly switch the type of conductivity at STO interfaces by the oxidation state of a redox overlayer. This will extend the spectrum of phenomena in oxide electronics, including the realization of combined n/p-type all-oxide transistors or logic gates.Comment: Advanced Materials (accepted

    Public Benefits of Undeveloped Lands on Urban Outskirts: Non-Market Valuation Studies and their Role in Land Use Plans

    Get PDF
    Over the past three decades, the economics profession has developed methods for estimating the public benefits of green spaces, providing an opportunity to incorporate such information into land-use planning. While federal regulations routinely require such estimates for major regulations, the extent to which they are used in local land use plans is not clear. This paper reviews the literature on public values for lands on urban outskirts, not just to survey their methods or empirical findings, but to evaluate the role they have played--or have the potential to play-- in actual land use plans. Based on interviews with authors and representatives of funding agencies and local land trusts, it appears that academic work has had a mixed reception in the policy world. Reasons for this include a lack of interest in making academic work accessible to policy makers, emphasizing revealed preference methods which are inconsistent with policy priorities related to nonuse values, and emphasis on benefit-cost analyses. Nevertheless, there are examples of success stories that illustrate how such information can play a vital role in the design of conservation policies. Working Paper 07-2
    • …
    corecore