18,122 research outputs found
Investigation of the fiber reinforcement of a cobalt base alloy for application at elevated temperature
Technique developed for incorporating alumina and silicon carbide fibers in cobalt base alloy for application at high temperature
Resolution-enhanced Mapping Spectrometer
A familiar mapping spectrometer implementation utilizes two dimensional detector arrays with spectral dispersion along one direction and spatial along the other. Spectral images are formed by spatially scanning across the scene (i.e., push-broom scanning). For imaging grating and prism spectrometers, the slit is perpendicular to the spatial scan direction. For spectrometers utilizing linearly variable focal-plane-mounted filters the spatial scan direction is perpendicular to the direction of spectral variation. These spectrometers share the common limitation that the number of spectral resolution elements is given by the number of pixels along the spectral (or dispersive) direction. Resolution enhancement by first passing the light input to the spectrometer through a scanned etalon or Michelson is discussed. Thus, while a detector element is scanned through a spatial resolution element of the scene, it is also temporally sampled. The analysis for all the pixels in the dispersive direction is addressed. Several specific examples are discussed. The alternate use of a Michelson for the same enhancement purpose is also discussed. Suitable for weight constrained deep space missions, hardware systems were developed including actuators, sensor, and electronics such that low-resolution etalons with performance required for implementation would weigh less than one pound
Concatenation of convolutional and block codes Final report
Comparison of concatenated and sequential decoding systems and convolutional code structural propertie
A comparison of spectral element and finite difference methods using statically refined nonconforming grids for the MHD island coalescence instability problem
A recently developed spectral-element adaptive refinement incompressible
magnetohydrodynamic (MHD) code [Rosenberg, Fournier, Fischer, Pouquet, J. Comp.
Phys. 215, 59-80 (2006)] is applied to simulate the problem of MHD island
coalescence instability (MICI) in two dimensions. MICI is a fundamental MHD
process that can produce sharp current layers and subsequent reconnection and
heating in a high-Lundquist number plasma such as the solar corona [Ng and
Bhattacharjee, Phys. Plasmas, 5, 4028 (1998)]. Due to the formation of thin
current layers, it is highly desirable to use adaptively or statically refined
grids to resolve them, and to maintain accuracy at the same time. The output of
the spectral-element static adaptive refinement simulations are compared with
simulations using a finite difference method on the same refinement grids, and
both methods are compared to pseudo-spectral simulations with uniform grids as
baselines. It is shown that with the statically refined grids roughly scaling
linearly with effective resolution, spectral element runs can maintain accuracy
significantly higher than that of the finite difference runs, in some cases
achieving close to full spectral accuracy.Comment: 19 pages, 17 figures, submitted to Astrophys. J. Supp
Adaptive mesh refinement with spectral accuracy for magnetohydrodynamics in two space dimensions
We examine the effect of accuracy of high-order spectral element methods,
with or without adaptive mesh refinement (AMR), in the context of a classical
configuration of magnetic reconnection in two space dimensions, the so-called
Orszag-Tang vortex made up of a magnetic X-point centered on a stagnation point
of the velocity. A recently developed spectral-element adaptive refinement
incompressible magnetohydrodynamic (MHD) code is applied to simulate this
problem. The MHD solver is explicit, and uses the Elsasser formulation on
high-order elements. It automatically takes advantage of the adaptive grid
mechanics that have been described elsewhere in the fluid context [Rosenberg,
Fournier, Fischer, Pouquet, J. Comp. Phys. 215, 59-80 (2006)]; the code allows
both statically refined and dynamically refined grids. Tests of the algorithm
using analytic solutions are described, and comparisons of the Orszag-Tang
solutions with pseudo-spectral computations are performed. We demonstrate for
moderate Reynolds numbers that the algorithms using both static and refined
grids reproduce the pseudo--spectral solutions quite well. We show that
low-order truncation--even with a comparable number of global degrees of
freedom--fails to correctly model some strong (sup--norm) quantities in this
problem, even though it satisfies adequately the weak (integrated) balance
diagnostics.Comment: 19 pages, 10 figures, 1 table. Submitted to New Journal of Physic
Cultural transmission of move choice in chess
The study of cultural evolution benefits from detailed analysis of cultural
transmission in specific human domains. Chess provides a platform for
understanding the transmission of knowledge due to its active community of
players, precise behaviors, and long-term records of high-quality data. In this
paper, we perform an analysis of chess in the context of cultural evolution,
describing multiple cultural factors that affect move choice. We then build a
population-level statistical model of move choice in chess, based on the
Dirichlet-multinomial likelihood, to analyze cultural transmission over decades
of recorded games played by leading players. For moves made in specific
positions, we evaluate the relative effects of frequency-dependent bias,
success bias, and prestige bias on the dynamics of move frequencies. We observe
that negative frequency-dependent bias plays a role in the dynamics of certain
moves, and that other moves are compatible with transmission under prestige
bias or success bias. These apparent biases may reflect recent changes, namely
the introduction of computer chess engines and online tournament broadcasts.
Our analysis of chess provides insights into broader questions concerning
evolution of human behavioral preferences and modes of social learning.Comment: 25 page
A 10 GHz Quasi-Optical Grid Amplifier Using Integrated HBT Differential Pairs
We report the fabrication and testing of a 10 GHz grid amplifier utilizing sixteen GaAs chips each
containing an HBT differential pair plus integral bias/feedback resistors. The overall amplifier consists of
a 4x4 array of unit cells on an RT Duroidâ„¢ board having a relative permittivity of 2.2. Each unit cell
consists of an emitter-coupled differential pair at the center, an input antenna which extends horizontally
in both directions from the two base leads, an output antenna which extends vertically in both directions
from the two collector leads, and high inductance bias lines. In operation, the active grid array is placed
between a pair of crossed polarizers. The horizontally polarized input wave passes through the input
polarizer and couples to the input leads. An amplified current then flows on the vertical leads, which
radiate a vertically polarized amplified signal through the output polarizer. The polarizers serve dual
functions, providing both input-output isolation as well as independent impedance matching for the input
and output ports. The grid thus functions essentially as a free-space beam amplifier. Calculations indicate
that output powers of several watts per square centimeter of grid area should be attainable with optimized
structures
- …