2,369 research outputs found

    SPSmart: adapting population based SNP genotype databases for fast and comprehensive web access

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In the last five years large online resources of human variability have appeared, notably HapMap, Perlegen and the CEPH foundation. These databases of genotypes with population information act as catalogues of human diversity, and are widely used as reference sources for population genetics studies. Although many useful conclusions may be extracted by querying databases individually, the lack of flexibility for combining data from within and between each database does not allow the calculation of key population variability statistics.</p> <p>Results</p> <p>We have developed a novel tool for accessing and combining large-scale genomic databases of single nucleotide polymorphisms (SNPs) in widespread use in human population genetics: SPSmart (SNPs for Population Studies). A fast pipeline creates and maintains a data mart from the most commonly accessed databases of genotypes containing population information: data is mined, summarized into the standard statistical reference indices, and stored into a relational database that currently handles as many as 4 × 10<sup>9 </sup>genotypes and that can be easily extended to new database initiatives. We have also built a web interface to the data mart that allows the browsing of underlying data indexed by population and the combining of populations, allowing intuitive and straightforward comparison of population groups. All the information served is optimized for web display, and most of the computations are already pre-processed in the data mart to speed up the data browsing and any computational treatment requested.</p> <p>Conclusion</p> <p>In practice, SPSmart allows populations to be combined into user-defined groups, while multiple databases can be accessed and compared in a few simple steps from a single query. It performs the queries rapidly and gives straightforward graphical summaries of SNP population variability through visual inspection of allele frequencies outlined in standard pie-chart format. In addition, full numerical description of the data is output in statistical results panels that include common population genetics metrics such as heterozygosity, <it>Fst </it>and <it>In</it>.</p

    The cyclin-dependent kinase inhibitor p57(Kip2) is epigenetically regulated in carboplatin resistance and results in collateral sensitivity to the CDK inhibitor seliciclib in ovarian cancer

    Get PDF
    Carboplatin remains a first-line agent in the management of epithelial ovarian cancer (EOC). Unfortunately, platinum-resistant disease ultimately occurs in most patients. Using a novel EOC cell line with acquired resistance to carboplatin: PEO1CarbR, genome-wide micro-array profiling identified the cyclin-dependent kinase inhibitor p57(Kip2) as specifically downregulated in carboplatin resistance. Presently, we describe confirmation of these preliminary data with a variety of approaches

    Rapid generation of chromosome-specific alphoid DNA probes using the polymerase chain reaction

    Get PDF
    Non-isotopic in situ hybridization of chromosome-specific alphoid DNA probes has become a potent tool in the study of numerical aberrations of specific human chromosomes at all stages of the cell cycle. In this paper, we describe approaches for the rapid generation of such probes using the polymerase chain reaction (PCR), and demonstrate their chromosome specificity by fluorescence in situ hybridization to normal human metaphase spreads and interphase nuclei. Oligonucleotide primers for conserved regions of the alpha satellite monomer were used to generate chromosome-specific DNA probes from somatic hybrid cells containing various human chromosomes, and from DNA libraries from sorted human chromosomes. Oligonucleotide primers for chromosome-specific regions of the alpha satellite monomer were used to generate specific DNA probes for the pericentromeric heterochromatin of human chromosomes 1, 6, 7, 17 and X directly from human genomic DNA

    Evaluation of Cause of Deaths' Validity Using Outcome Measures from a Prospective, Population Based Cohort Study in Tehran, Iran

    Get PDF
    OBJECTIVE: The aim of this study was to evaluate the validity of cause of death stated in death certificates in Tehran using outcome measures of the Tehran Lipid and Glucose Study (TLGS), an ongoing prospective cohort study. METHODS: The cohort was established in 1999 in a population of 15005 people, 3 years old and over, living in Tehran; 3551 individuals were added to this population three years later. As part of cohort's outcome measures, deaths occurring in the cohort are investigated by a panel of medical specialists (Cohort Outcome Panel--COP) and underlying cause of death is determined for each death. The cause of death assigned in a deceased's original death certificate was evaluated against the cause of death determined by COP and sensitivity and positive predictive values (PPV) were determined. In addition, determinants of assigning accurate underlying cause of death were determined using logistic regression model. RESULT: A total of 231 death certificates were evaluated. The original death certificates over reported deaths due to neoplasms and underreported death due to circulatory system and transport accidents. Neoplasms with sensitivity of 0.91 and PPV of 0.71 were the most valid category. The disease of circulatory system showed moderate degree of validity with sensitivity of 0.67 and PPV of 0.78. The result of logistic regression indicated if the death certificate is issued by a general practitioner, there is 2.3 (95% CI 1.1, 5.1) times chance of being misclassified compared with when it is issued by a specialist. If the deceased is more than 60 years, the chance of misclassification would be 2.5 times (95% CI of 1.1, 5.9) compared with when the deceased is less than 60 years

    PCA-based population structure inference with generic clustering algorithms

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Handling genotype data typed at hundreds of thousands of loci is very time-consuming and it is no exception for population structure inference. Therefore, we propose to apply PCA to the genotype data of a population, select the significant principal components using the Tracy-Widom distribution, and assign the individuals to one or more subpopulations using generic clustering algorithms.</p> <p>Results</p> <p>We investigated K-means, soft K-means and spectral clustering and made comparison to STRUCTURE, a model-based algorithm specifically designed for population structure inference. Moreover, we investigated methods for predicting the number of subpopulations in a population. The results on four simulated datasets and two real datasets indicate that our approach performs comparably well to STRUCTURE. For the simulated datasets, STRUCTURE and soft K-means with BIC produced identical predictions on the number of subpopulations. We also showed that, for real dataset, BIC is a better index than likelihood in predicting the number of subpopulations.</p> <p>Conclusion</p> <p>Our approach has the advantage of being fast and scalable, while STRUCTURE is very time-consuming because of the nature of MCMC in parameter estimation. Therefore, we suggest choosing the proper algorithm based on the application of population structure inference.</p

    Genomic microsatellites identify shared Jewish ancestry intermediate between Middle Eastern and European populations

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Genetic studies have often produced conflicting results on the question of whether distant Jewish populations in different geographic locations share greater genetic similarity to each other or instead, to nearby non-Jewish populations. We perform a genome-wide population-genetic study of Jewish populations, analyzing 678 autosomal microsatellite loci in 78 individuals from four Jewish groups together with similar data on 321 individuals from 12 non-Jewish Middle Eastern and European populations.</p> <p>Results</p> <p>We find that the Jewish populations show a high level of genetic similarity to each other, clustering together in several types of analysis of population structure. Further, Bayesian clustering, neighbor-joining trees, and multidimensional scaling place the Jewish populations as intermediate between the non-Jewish Middle Eastern and European populations.</p> <p>Conclusion</p> <p>These results support the view that the Jewish populations largely share a common Middle Eastern ancestry and that over their history they have undergone varying degrees of admixture with non-Jewish populations of European descent.</p

    Straightforward Inference of Ancestry and Admixture Proportions through Ancestry-Informative Insertion Deletion Multiplexing

    Get PDF
    Ancestry-informative markers (AIMs) show high allele frequency divergence between different ancestral or geographically distant populations. These genetic markers are especially useful in inferring the likely ancestral origin of an individual or estimating the apportionment of ancestry components in admixed individuals or populations. The study of AIMs is of great interest in clinical genetics research, particularly to detect and correct for population substructure effects in case-control association studies, but also in population and forensic genetics studies
    corecore