4,446 research outputs found
Possible Implications of Asymmetric Fermionic Dark Matter for Neutron Stars
We consider the implications of fermionic asymmetric dark matter for a "mixed
neutron star" composed of ordinary baryons and dark fermions. We find examples,
where for a certain range of dark fermion mass -- when it is less than that of
ordinary baryons -- such systems can reach higher masses than the maximal
values allowed for ordinary ("pure") neutron stars. This is shown both within a
simplified, heuristic Newtonian analytic framework with non-interacting
particles and via a general relativistic numerical calculation, under certain
assumptions for the dark matter equation of state. Our work applies to various
dark fermion models such as mirror matter models and to other models where the
dark fermions have self interactions.Comment: 20 pages, 6 figure
Malin 1: interacting galaxy pair?
Malin 1 is a unique, extraordinarily large low surface brightness galaxy. The
structure and the origins of the galaxy are poorly understood. The reason for
such a situation is an absence of detailed observational data, especially, of
high-resolution kinematics. In this Letter we study the stellar kinematics of
the inner part (r < 15 kpc) of Malin 1. We present spectroscopic arguments in
favour of a small galaxy - Malin 1B - being a companion probably interacting
with the main galaxy - Malin 1. This object is clearly seen in many published
images of Malin 1 but is not mentioned in any astronomical databases. Malin 1B
is located at the projected distance of 14 kpc from the Malin 1's nucleus and
has small - 6516 km/s - relative velocity, which we determined for the
first time. We suggest that ongoing interaction with Malin 1B can explain main
morphological features of the Malin 1's central region - two-armed spiral
structure, a bar, and an external one-armed spiral pattern. We also
investigated the large scale environment of Malin 1 and postulate that the
galaxy SDSS J123708.91+142253.2 might be responsible for the formation of
extended low-surface brightness envelope by means of head-on collision with
Malin 1 (in the framework of collision scenario proposed by Mapelli et al.
2008). To test the collisional origins of Malin 1 global structure, more
observational data and new numerical models are needed.Comment: 5 pages, 4 figures, accepted for publication in MNRA
Strange Quarks Nuggets in Space: Charges in Seven Settings
We have computed the charge that develops on an SQN in space as a result of
balance between the rates of ionization by ambient gammas and capture of
ambient electrons. We have also computed the times for achieving that
equilibrium and binding energy of the least bound SQN electrons. We have done
this for seven different settings. We sketch the calculations here and give
their results in the Figure and Table II; details are in the Physical Review
D.79.023513 (2009).Comment: Six pages, one figure. To appear in proceedings of the 2008 UCLA
coference on dark matter and dark energ
Critical Behavior of the Conductivity of Si:P at the Metal-Insulator Transition under Uniaxial Stress
We report new measurements of the electrical conductivity sigma of the
canonical three-dimensional metal-insulator system Si:P under uniaxial stress
S. The zero-temperature extrapolation of sigma(S,T -> 0) ~\S - S_c\^mu shows an
unprecidentedly sharp onset of finite conductivity at S_c with an exponent mu =
1. The value of mu differs significantly from that of earlier stress-tuning
results. Our data show dynamical sigma(S,T) scaling on both metallic and
insulating sides, viz. sigma(S,T) = sigma_c(T) F(\S - S_cT^y) where sigma_c(T)
is the conductivity at the critical stress S_c. We find y = 1/znu = 0.34 where
nu is the correlation-length exponent and z the dynamic critical exponent.Comment: 5 pages, 4 figure
Electronic states in a disordered metal: Magnetotransport in doped germanium
We observe a sharp feature in the ultra-low-temperature magnetoconductivity of degenerately doped Ge:Sb at H∼25 kOe, which is robust up to at least three times the critical density for the insulator-metal transition. This field corresponds to a low-energy scale characteristic of the special nature of antimony donors in germanium. Its presence and sensitivity to uniaxial stress confirm the notion of metallic impurity bands in doped germanium
Charge Berezinskii-Kosterlitz-Thouless transition in superconducting NbTiN films
A half-century after the discovery of the superconductor-insulator transition
(SIT), one of the fundamental predictions of the theory, the charge
Berezinskii-Kosterlitz-Thouless (BKT) transition that is expected to occur at
the insulating side of the SIT, has remained unobserved. The charge BKT
transition is a phenomenon dual to the vortex BKT transition, which is at the
heart of the very existence of two-dimensional superconductivity as a
zero-resistance state appearing at finite temperatures. The dual picture points
to the possibility of the existence of a superinsulating state endowed with
zero conductance at finite temperature. Here, we report the observation of the
charge BKT transition on the insulating side of the SIT, identified by the
critical behavior of the resistance. We find that the critical temperature of
the charge BKT transition depends on the magnetic field exhibiting first the
fast growth and then passing through the maximum at fields much less than the
upper critical field. Finally, we ascertain the effects of the finite
electrostatic screening length and its divergence at the magnetic field-tuned
approach to the superconductor-insulator transition.Comment: 9 pages, 6 figure
Inference with interference between units in an fMRI experiment of motor inhibition
An experimental unit is an opportunity to randomly apply or withhold a
treatment. There is interference between units if the application of the
treatment to one unit may also affect other units. In cognitive neuroscience, a
common form of experiment presents a sequence of stimuli or requests for
cognitive activity at random to each experimental subject and measures
biological aspects of brain activity that follow these requests. Each subject
is then many experimental units, and interference between units within an
experimental subject is likely, in part because the stimuli follow one another
quickly and in part because human subjects learn or become experienced or
primed or bored as the experiment proceeds. We use a recent fMRI experiment
concerned with the inhibition of motor activity to illustrate and further
develop recently proposed methodology for inference in the presence of
interference. A simulation evaluates the power of competing procedures.Comment: Published by Journal of the American Statistical Association at
http://www.tandfonline.com/doi/full/10.1080/01621459.2012.655954 . R package
cin (Causal Inference for Neuroscience) implementing the proposed method is
freely available on CRAN at https://CRAN.R-project.org/package=ci
- …