6,543 research outputs found

    Analytical study of aerodynamic means of controlling supersonic inlet flow, part I Technical report no. 495B

    Get PDF
    Means for achieving variable geometry supersonic inlet without using mechanical device

    Critical Behavior of the Conductivity of Si:P at the Metal-Insulator Transition under Uniaxial Stress

    Full text link
    We report new measurements of the electrical conductivity sigma of the canonical three-dimensional metal-insulator system Si:P under uniaxial stress S. The zero-temperature extrapolation of sigma(S,T -> 0) ~\S - S_c\^mu shows an unprecidentedly sharp onset of finite conductivity at S_c with an exponent mu = 1. The value of mu differs significantly from that of earlier stress-tuning results. Our data show dynamical sigma(S,T) scaling on both metallic and insulating sides, viz. sigma(S,T) = sigma_c(T) F(\S - S_cT^y) where sigma_c(T) is the conductivity at the critical stress S_c. We find y = 1/znu = 0.34 where nu is the correlation-length exponent and z the dynamic critical exponent.Comment: 5 pages, 4 figure

    Baby-Step Giant-Step Algorithms for the Symmetric Group

    Full text link
    We study discrete logarithms in the setting of group actions. Suppose that GG is a group that acts on a set SS. When r,s∈Sr,s \in S, a solution g∈Gg \in G to rg=sr^g = s can be thought of as a kind of logarithm. In this paper, we study the case where G=SnG = S_n, and develop analogs to the Shanks baby-step / giant-step procedure for ordinary discrete logarithms. Specifically, we compute two sets A,B⊆SnA, B \subseteq S_n such that every permutation of SnS_n can be written as a product abab of elements a∈Aa \in A and b∈Bb \in B. Our deterministic procedure is optimal up to constant factors, in the sense that AA and BB can be computed in optimal asymptotic complexity, and ∣A∣|A| and ∣B∣|B| are a small constant from n!\sqrt{n!} in size. We also analyze randomized "collision" algorithms for the same problem

    Variational Approach to Gaussian Approximate Coherent States: Quantum Mechanics and Minisuperspace Field Theory

    Get PDF
    This paper has a dual purpose. One aim is to study the evolution of coherent states in ordinary quantum mechanics. This is done by means of a Hamiltonian approach to the evolution of the parameters that define the state. The stability of the solutions is studied. The second aim is to apply these techniques to the study of the stability of minisuperspace solutions in field theory. For a λφ4\lambda \varphi^4 theory we show, both by means of perturbation theory and rigorously by means of theorems of the K.A.M. type, that the homogeneous minisuperspace sector is indeed stable for positive values of the parameters that define the field theory.Comment: 26 pages, Plain TeX, no figure

    Conductivity of Metallic Si:B near the Metal-Insulator Transition: Comparison between Unstressed and Uniaxially Stressed Samples

    Full text link
    The low-temperature dc conductivities of barely metallic samples of p-type Si:B are compared for a series of samples with different dopant concentrations, n, in the absence of stress (cubic symmetry), and for a single sample driven from the metallic into the insulating phase by uniaxial compression, S. For all values of temperature and stress, the conductivity of the stressed sample collapses onto a single universal scaling curve. The scaling fit indicates that the conductivity of si:B is proportional to the square-root of T in the critical range. Our data yield a critical conductivity exponent of 1.6, considerably larger than the value reported in earlier experiments where the transition was crossed by varying the dopant concentration. The larger exponent is based on data in a narrow range of stress near the critical value within which scaling holds. We show explicitly that the temperature dependences of the conductivity of stressed and unstressed Si:B are different, suggesting that a direct comparison of the critical behavior and critical exponents for stress- tuned and concentration-tuned transitions may not be warranted

    Continuous and Discontinuous Quantum Phase Transitions in a Model Two-Dimensional Magnet

    Get PDF
    The Shastry-Sutherland model, which consists of a set of spin 1/2 dimers on a 2-dimensional square lattice, is simple and soluble, but captures a central theme of condensed matter physics by sitting precariously on the quantum edge between isolated, gapped excitations and collective, ordered ground states. We compress the model Shastry-Sutherland material, SrCu2(BO3)2, in a diamond anvil cell at cryogenic temperatures to continuously tune the coupling energies and induce changes in state. High-resolution x-ray measurements exploit what emerges as a remarkably strong spin-lattice coupling to both monitor the magnetic behavior and the absence or presence of structural discontinuities. In the low-pressure spin-singlet regime, the onset of magnetism results in an expansion of the lattice with decreasing temperature, which permits a determination of the pressure dependent energy gap and the almost isotropic spin-lattice coupling energies. The singlet-triplet gap energy is suppressed continuously with increasing pressure, vanishing completely by 2 GPa. This continuous quantum phase transition is followed by a structural distortion at higher pressure.Comment: 16 pages, 4 figures. Accepted for publication in PNA
    • …
    corecore