85 research outputs found
Magnesium and Boron Combustion in Hot Steam Atmosphere
This paper investigates the combustion of magnesium and boron powders in hot steam. A thermochemical analysis reveals theoretical results of such interactions. An experimental investigation demonstrates that stable exothermic oxidation takes place, resulting in actual combustion at 1100 °c for magnesium and 800 °c for boron. The reaction generates large quantity of gaseous products consisting of almost pure hydrogen and corresponding to about 60 per cent of a complete chemical reactio
Experimental demonstration of a technique to generate arbitrary quantum superposition states
Using a single, harmonically trapped Be ion, we experimentally
demonstrate a technique for generation of arbitrary states of a two-level
particle confined by a harmonic potential. Rather than engineering a single
Hamiltonian that evolves the system to a desired final sate, we implement a
technique that applies a sequence of simple operations to synthesize the state
Quantum information processing with trapped ions
Experiments directed towards the development of a quantum computer based on
trapped atomic ions are described briefly. We discuss the implementation of
single qubit operations and gates between qubits. A geometric phase gate
between two ion qubits is described. Limitations of the trapped-ion method such
as those caused by Stark shifts and spontaneous emission are addressed.
Finally, we describe a strategy to realize a large-scale device.Comment: Article submitted by D. J. Wineland ([email protected])
for proceeding of the Discussion Meeting on Practical Realisations of Quantum
Information Processing, held at the Royal Society, Nov. 13,14, 200
Simulation of Quantum Magnetism in Mixed Spin Systems with Impurity Doped Ion Crystal
We propose the realization of linear crystals of cold ions which contain
different atomic species for investigating quantum phase transitions and
frustration effects in spin system beyond the commonly discussed case of
. Mutual spin-spin interactions between ions can be tailored via the
Zeeman effect by applying oscillating magnetic fields with strong gradients.
Further, collective vibrational modes in the mixed ion crystal can be used to
enhance and to vary the strength of spin-spin interactions and even to switch
those forces from a ferro- to an antiferromagnetic character. We consider the
behavior of the effective spin-spin couplings in an ion crystal of spin-1/2
ions doped with high magnetic moment ions with spin S=3. We analyze the ground
state phase diagram and find regions with different spin orders including
ferrimagnetic states. In the most simple non-trivial example we deal with a
linear Ca, Mn, Ca crystal with spins of \{1/2,3,1/2}. To
show the feasibility with current state-of-the-art experiments, we discuss how
quantum phases might be detected using a collective Stern-Gerlach effect of the
ion crystal and high resolution spectroscopy. Here, the state-dependent
laser-induced fluorescence of the indicator spin-1/2 ion, of species
Ca, reveals also the spin state of the simulator spin-3 ions,
Mn as this does not possess suitable levels for optical excitation
and detection.Comment: 15 pages, 5 figure
Trapped-Ion Quantum Simulator: Experimental Application to Nonlinear Interferometers
We show how an experimentally realized set of operations on a single trapped
ion is sufficient to simulate a wide class of Hamiltonians of a spin-1/2
particle in an external potential. This system is also able to simulate other
physical dynamics. As a demonstration, we simulate the action of an -th
order nonlinear optical beamsplitter. Two of these beamsplitters can be used to
construct an interferometer sensitive to phase shifts in one of the
interferometer beam paths. The sensitivity in determining these phase shifts
increases linearly with , and the simulation demonstrates that the use of
nonlinear beamsplitters (=2,3) enhances this sensitivity compared to the
standard quantum limit imposed by a linear beamsplitter (=1)
Zeeman slowing of thulium atoms
We demonstrate laser slowing of a hot thulium atomic beam using the nearly
closed cycling transition
at 410.6 nm. Atoms are decelerated to velocities around 25 m/s by a 40 cm
Zeeman slower. The flux of slowed atoms is evaluated as . The experiment explicitly indicates the
possibility of trapping Tm atoms in a magneto-optical trap.Comment: 3 pages, 4 figure
The Equivalence Principle and the Constants of Nature
We briefly review the various contexts within which one might address the
issue of ``why'' the dimensionless constants of Nature have the particular
values that they are observed to have. Both the general historical trend, in
physics, of replacing a-priori-given, absolute structures by dynamical
entities, and anthropic considerations, suggest that coupling ``constants''
have a dynamical nature. This hints at the existence of observable violations
of the Equivalence Principle at some level, and motivates the need for improved
tests of the Equivalence Principle.Comment: 12 pages; invited talk at the ISSI Workshop on the Nature of Gravity:
Confronting Theory and Experiment in Space, Bern, Switzerland, 6-10 October
2008; to appear in Space Science Review
- …