16,370 research outputs found
Nonet Symmetry and Two-Body Decays of Charmed Mesons
The decay of charmed mesons into pseudoscalar (P) and vector (V) mesons is
studied in the context of nonet symmetry. We have found that it is badly broken
in the PP channels and in the P sector of the PV channels as expected from the
non-ideal mixing of the \eta and the \eta'. In the VV channels, it is also
found that nonet symmetry does not describe the data well. We have found that
this discrepancy cannot be attributed entirely to SU(3) breaking at the usual
level of 20--30%. At least one, or both, of nonet and SU(3) symmetry must be
very badly broken. The possibility of resolving the problem in the future is
also discussed.Comment: 9 pages, UTAPHY-HEP-
Laser driven launch vehicles for continuous access to space
The availability of megawatt laser systems in the next century will make laser launch systems from ground to orbit feasible and useful. Systems studies indicate launch capabilities of 1 ton payload per gigawatt laser power. Recent research in ground to orbit laser propulsion has emphasized laser supported detonation wave thrusters driven by repetitively pulsed infrared lasers. In this propulsion concept each laser repetition cycle consists of two pulses. A lower energy first pulse is used to vaporize a small amount of solid propellant and then after a brief expansion period, a second and higher energy laser pulse is used to drive a detonation wave through the expanded vapor. The results are reported of numerical studies comparing the detonation wave properties of various candidate propellants, and the simulation of thruster performance under realistic conditions. Experimental measurements designed to test the theoretical predictions are also presented. Measurements are discussed of radiance and opacity in absorption waves, and mass loss and momentum transfer. These data are interpreted in terms of specific impulse and energy conversion efficiency
A Pulsational Model for the Orthogonal Polarization Modes in Radio Pulsars
In an earlier paper, we introduced a model for pulsars in which non-radial
oscillations of high spherical degree (\el) aligned to the magnetic axis of a
spinning neutron star were able to reproduce subpulses like those observed in
single-pulse measurements of pulsar intensity. The model did not address
polarization, which is an integral part of pulsar emission. Observations show
that many pulsars emit radio waves that appear to be the superposition of two
linearly polarized emission modes with orthogonal polarization angles. In this
paper, we extend our model to incorporate linear polarization. As before, we
propose that pulsational displacements of stellar material modulate the pulsar
emission, but now we apply this modulation to a linearly-polarized mode of
emission, as might be produced by curvature radiation. We further introduce a
second polarization mode, orthogonal to the first, that is modulated by
pulsational velocities. We combine these modes in superposition to model the
observed Stokes parameters in radio pulsars.Comment: 19 pages, 4 figures accepted Ap
Micellar Aggregates of Gemini Surfactants: Monte Carlo Simulation of a Microscopic Model
We propose a "microscopic" model of gemini surfactants in aqueous solution.
Carrying out extensive Monte Carlo simulations, we study the variation of the
critical micellar concentration (CMC) of these model gemini surfactants with
the variation of the (a) length of the spacer connecting the two hydrophilic
heads, (b) length of the hydrophobic tail and (c) the bending rigidity of the
hydrocarbon chains forming the spacer and the tail; some of the trends of
variation are counter-intuitive but are in excellent agreement with the
available experimental results. Our simulations also elucidate the dependence
of the shapes of the micellar aggregates and the magnitude of the CMC on the
geometrical shape and size of the surfactant molecules and the electrical
charge on the hydrophilic heads
A WZW model based on a non-semi-simple group
We present a conformal field theory which desribes a homogeneous four
dimensional Lorentz-signature space-time. The model is an ungauged WZW model
based on a central extension of the Poincar\'e algebra. The central charge of
this theory is exactly four, just like four dimensional Minkowski space. The
model can be interpreted as a four dimensional monochromatic plane wave. As
there are three commuting isometries, other interesting geometries are expected
to emerge via duality.Comment: 8 pages, phyzzx, IASSNS-HEP-93/61 Texable versio
Observations of the SW Sextantis star DW Ursae Majoris with the Far Ultraviolet Spectroscopic Explorer
We present an analysis of the first far-ultraviolet observations of the SW
Sextantis-type cataclysmic variable DW Ursae Majoris, obtained in November 2001
with the Far Ultraviolet Spectroscopic Explorer. The time-averaged spectrum of
DW UMa shows a rich assortment of emission lines (plus some contamination from
interstellar absorption lines including molecular hydrogen). Accretion disk
model spectra do not provide an adequate fit to the far-ultraviolet spectrum of
DW UMa. We constructed a light curve by summing far-ultraviolet spectra
extracted in 60-sec bins; this shows a modulation on the orbital period, with a
maximum near photometric phase 0.93 and a minimum half an orbit later. No other
periodic variability was found in the light curve data. We also extracted
spectra in bins spanning 0.1 in orbital phase; these show substantial variation
in the profile shapes and velocity shifts of the emission lines during an
orbital cycle of DW UMa. Finally, we discuss possible physical models that can
qualitatively account for the observed far-ultraviolet behavior of DW UMa, in
the context of recent observational evidence for the presence of a
self-occulting disk in DW UMa and the possibility that the SW Sex stars may be
the intermediate polars with the highest mass transfer rates and/or weakest
magnetic fields.Comment: accepted by the Astronomical Journal; 36 pages, including 12 figures
and 4 table
Modeling the functional genomics of autism using human neurons.
Human neural progenitors from a variety of sources present new opportunities to model aspects of human neuropsychiatric disease in vitro. Such in vitro models provide the advantages of a human genetic background combined with rapid and easy manipulation, making them highly useful adjuncts to animal models. Here, we examined whether a human neuronal culture system could be utilized to assess the transcriptional program involved in human neural differentiation and to model some of the molecular features of a neurodevelopmental disorder, such as autism. Primary normal human neuronal progenitors (NHNPs) were differentiated into a post-mitotic neuronal state through addition of specific growth factors and whole-genome gene expression was examined throughout a time course of neuronal differentiation. After 4 weeks of differentiation, a significant number of genes associated with autism spectrum disorders (ASDs) are either induced or repressed. This includes the ASD susceptibility gene neurexin 1, which showed a distinct pattern from neurexin 3 in vitro, and which we validated in vivo in fetal human brain. Using weighted gene co-expression network analysis, we visualized the network structure of transcriptional regulation, demonstrating via this unbiased analysis that a significant number of ASD candidate genes are coordinately regulated during the differentiation process. As NHNPs are genetically tractable and manipulable, they can be used to study both the effects of mutations in multiple ASD candidate genes on neuronal differentiation and gene expression in combination with the effects of potential therapeutic molecules. These data also provide a step towards better understanding of the signaling pathways disrupted in ASD
Automatic Brain Tumor Segmentation using Convolutional Neural Networks with Test-Time Augmentation
Automatic brain tumor segmentation plays an important role for diagnosis,
surgical planning and treatment assessment of brain tumors. Deep convolutional
neural networks (CNNs) have been widely used for this task. Due to the
relatively small data set for training, data augmentation at training time has
been commonly used for better performance of CNNs. Recent works also
demonstrated the usefulness of using augmentation at test time, in addition to
training time, for achieving more robust predictions. We investigate how
test-time augmentation can improve CNNs' performance for brain tumor
segmentation. We used different underpinning network structures and augmented
the image by 3D rotation, flipping, scaling and adding random noise at both
training and test time. Experiments with BraTS 2018 training and validation set
show that test-time augmentation helps to improve the brain tumor segmentation
accuracy and obtain uncertainty estimation of the segmentation results.Comment: 12 pages, 3 figures, MICCAI BrainLes 201
Interstitial gas and density-segregation in vertically-vibrated granular media
We report experimental studies of the effect of interstitial gas on
mass-density-segregation in a vertically-vibrated mixture of equal-sized bronze
and glass spheres. Sufficiently strong vibration in the presence of
interstitial gas induces vertical segregation into sharply separated bronze and
glass layers. We find that the segregated steady state (i.e., bronze or glass
layer on top) is a sensitive function of gas pressure and viscosity, as well as
vibration frequency and amplitude. In particular, we identify distinct regimes
of behavior that characterize the change from bronze-on-top to glass-on-top
steady-state.Comment: 4 pages, 5 figures, submitted to PRL; accepted in PRE as rapid
communication, with revised text and reference
- …