25 research outputs found

    The Dfam community resource of transposable element families, sequence models, and genome annotations.

    Get PDF
    Dfam is an open access database of repetitive DNA families, sequence models, and genome annotations. The 3.0-3.3 releases of Dfam ( https://dfam.org ) represent an evolution from a proof-of-principle collection of transposable element families in model organisms into a community resource for a broad range of species, and for both curated and uncurated datasets. In addition, releases since Dfam 3.0 provide auxiliary consensus sequence models, transposable element protein alignments, and a formalized classification system to support the growing diversity of organisms represented in the resource. The latest release includes 266,740 new de novo generated transposable element families from 336 species contributed by the EBI. This expansion demonstrates the utility of many of Dfam\u27s new features and provides insight into the long term challenges ahead for improving de novo generated transposable element datasets

    cAMP/PKA Regulates Osteogenesis, Adipogenesis and Ratio of RANKL/OPG mRNA Expression in Mesenchymal Stem Cells by Suppressing Leptin

    Get PDF
    BACKGROUND: Mesenchymal stem cells (MSCs) are a pluripotent cell type that can differentiate into adipocytes, osteoblasts and other cells. The reciprocal relationship between adipogenesis and osteogenesis was previously demonstrated; however, the mechanisms remain largely unknown. METHODS AND FINDINGS: We report that activation of PKA by 3-isobutyl-1 methyl xanthine (IBMX) and forskolin enhances adipogenesis, the gene expression of PPARgamma2 and LPL, and downregulates the gene expression of Runx2 and osteopontin, markers of osteogenesis. PKA activation also decreases the ratio of Receptor Activator of the NF-kappaB Ligand to Osteoprotegerin (RANKL/OPG) gene expression - the key factors of osteoclastogenesis. All these effects are mediated by the cAMP/PKA/CREB pathway by suppressing leptin, and may contribute to PKA stimulators-induced in vivo bone loss in developing zebrafish. CONCLUSIONS: Using MSCs, the center of a newly proposed bone metabolic unit, we identified cAMP/PKA signaling, one of the many signaling pathways that regulate bone homeostasis via controlling cyto-differentiation of MSCs and altering RANKL/OPG gene expression

    Methodologies for the De novo Discovery of Transposable Element Families

    No full text
    The discovery and characterization of transposable element (TE) families are crucial tasks in the process of genome annotation. Careful curation of TE libraries for each organism is necessary as each has been exposed to a unique and often complex set of TE families. De novo methods have been developed; however, a fully automated and accurate approach to the development of complete libraries remains elusive. In this review, we cover established methods and recent developments in de novo TE analysis. We also present various methodologies used to assess these tools and discuss opportunities for further advancement of the field

    Curation Guidelines for de novo Generated Transposable Element Families.

    No full text
    Transposable elements (TEs) have the ability to alter individual genomic landscapes and shape the course of evolution for species in which they reside. Such profound changes can be understood by studying the biology of the organism and the interplay of the TEs it hosts. Characterizing and curating TEs across a wide range of species is a fundamental first step in this endeavor. This protocol employs techniques honed while developing TE libraries for a wide range of organisms and specifically addresses: (1) the extension of truncated de novo results into full-length TE families; (2) the iterative refinement of TE multiple sequence alignments; and (3) the use of alignment visualization to assess model completeness and subfamily structure. © 2021 Wiley Periodicals LLC. Basic Protocol: Extension and edge polishing of consensi and seed alignments derived from de novo repeat finders Support Protocol: Generating seed alignments using a library of consensi and a genome assembly

    RepeatModeler2 for automated genomic discovery of transposable element families.

    No full text
    The accelerating pace of genome sequencing throughout the tree of life is driving the need for improved unsupervised annotation of genome components such as transposable elements (TEs). Because the types and sequences of TEs are highly variable across species, automated TE discovery and annotation are challenging and time-consuming tasks. A critical first step is the de novo identification and accurate compilation of sequence models representing all of the unique TE families dispersed in the genome. Here we introduce RepeatModeler2, a pipeline that greatly facilitates this process. This program brings substantial improvements over the original version of RepeatModeler, one of the most widely used tools for TE discovery. In particular, this version incorporates a module for structural discovery of complete long terminal repeat (LTR) retroelements, which are widespread in eukaryotic genomes but recalcitrant to automated identification because of their size and sequence complexity. We benchmarked RepeatModeler2 on three model species with diverse TE landscapes and high-quality, manually curated TE libraries

    Insights into mammalian TE diversity through the curation of 248 genome assemblies.

    No full text
    We examined transposable element (TE) content of 248 placental mammal genome assemblies, the largest de novo TE curation effort in eukaryotes to date. We found that although mammals resemble one another in total TE content and diversity, they show substantial differences with regard to recent TE accumulation. This includes multiple recent expansion and quiescence events across the mammalian tree. Young TEs, particularly long interspersed elements, drive increases in genome size, whereas DNA transposons are associated with smaller genomes. Mammals tend to accumulate only a few types of TEs at any given time, with one TE type dominating. We also found association between dietary habit and the presence of DNA transposon invasions. These detailed annotations will serve as a benchmark for future comparative TE analyses among placental mammals

    Chiropterans Are a Hotspot for Horizontal Transfer of DNA Transposons in Mammalia.

    No full text
    Horizontal transfer of transposable elements (TEs) is an important mechanism contributing to genetic diversity and innovation. Bats (order Chiroptera) have repeatedly been shown to experience horizontal transfer of TEs at what appears to be a high rate compared with other mammals. We investigated the occurrence of horizontally transferred (HT) DNA transposons involving bats. We found over 200 putative HT elements within bats; 16 transposons were shared across distantly related mammalian clades, and 2 other elements were shared with a fish and two lizard species. Our results indicate that bats are a hotspot for horizontal transfer of DNA transposons. These events broadly coincide with the diversification of several bat clades, supporting the hypothesis that DNA transposon invasions have contributed to genetic diversification of bats

    From telomere to telomere: The transcriptional and epigenetic state of human repeat elements

    No full text
    Mobile elements and repetitive genomic regions are sources of lineage-specific genomic innovation and uniquely fingerprint individual genomes. Comprehensive analyses of such repeat elements, including those found in more complex regions of the genome, require a complete, linear genome assembly. We present a de novo repeat discovery and annotation of the T2T-CHM13 human reference genome. We identified previously unknown satellite arrays, expanded the catalog of variants and families for repeats and mobile elements, characterized classes of complex composite repeats, and located retroelement transduction events. We detected nascent transcription and delineated CpG methylation profiles to define the structure of transcriptionally active retroelements in humans, including those in centromeres. These data expand our insight into the diversity, distribution, and evolution of repetitive regions that have shaped the human genome

    Chiropterans are a hotspot for horizontal transfer of DNA transposons in mammalia

    Get PDF
    This project was supported by the National Science Foundation (grant numbers DEB 1838283 and IOS 2032006 to D.M.-S. and Dav.R. and DEB 1838273 and DGE 1633299 to L.D.), National Institutes of Health (grant numbers R01HG002939 and U24HG010136 to J.S., R.H., A.F.A.S., and Je.R.), NHGRI (grant number R01HG008742 to Z.C.), Irish Research Council (grant number IRCLA/ 2017/58 to E.T.), Science Foundation Ireland (grant number 19/FFP/6790 to E.T.), Max Planck Research Group awarded by the Max Planck Gesellschaft to S.V., Human Frontiers Science Program (grant number RGP0058/2016 to S.V.), UK Research and Innovation (grant number MR/T021985/1 to S.V.), and the Swedish Research Council Distinguished Professor Award to K.L.-T.Horizontal transfer of transposable elements (TEs) is an important mechanism contributing to genetic diversity and innovation. Bats (order Chiroptera) have repeatedly been shown to experience horizontal transfer of TEs at what appears to be a high rate compared with other mammals. We investigated the occurrence of horizontally transferred (HT) DNA transposons involving bats. We found over 200 putative HT elements within bats; 16 transposons were shared across distantly related mammalian clades, and 2 other elements were shared with a fish and two lizard species. Our results indicate that bats are a hotspot for horizontal transfer of DNA transposons. These events broadly coincide with the diversification of several bat clades, supporting the hypothesis that DNA transposon invasions have contributed to genetic diversification of bats.Publisher PDFPeer reviewe
    corecore