355 research outputs found

    Island time and the interplay between ecology and evolution in species diversification.

    Get PDF
    Research on the dynamics of biodiversity has progressed tremendously over recent years, although in two separate directions - ecological, to determine change over space at a given time, and evolutionary, to understand change over time. Integration of these approaches has remained elusive. Archipelagoes with a known geological chronology provide an opportunity to study ecological interactions over evolutionary time. Here, I focus on the Hawaiian archipelago and summarize the development of ecological and evolutionary research; I emphasize spiders because they have attributes allowing analysis of ecological affinities in concert with diversification. Within this framework, I highlight recent insights from the island chronosequence, in particular the importance of (i) selection and genetic drift in generating diversity; (ii) fusion and fission in fostering diversification; and (iii) variability upon which selection can act. Insights into biodiversity dynamics at the nexus of ecology and evolution are now achievable by integrating new tools, in particular (i) ecological metrics (interaction networks, maximum entropy inference) across the chronosequence to uncover community dynamics and (ii) genomic tools to understand contemporaneous microevolutionary change. The work can inform applications of invasion and restoration ecology by elucidating the importance of changes in abundances, interaction strengths, and rates of evolutionary response in shaping biodiversity

    Stable isotopes of Hawaiian spiders reflect substrate properties along a chronosequence.

    Get PDF
    The Hawaiian Islands offer a unique opportunity to test how changes in the properties of an isolated ecosystem are propagated through the organisms that occur within that ecosystem. The age-structured arrangement of volcanic-derived substrates follows a regular progression over space and, by inference, time. We test how well documented successional changes in soil chemistry and associated vegetation are reflected in organisms at higher trophic levels-specifically, predatory arthropods (spiders)-across a range of functional groups. We focus on three separate spider lineages: one that builds capture webs, one that hunts actively, and one that specializes on eating other spiders. We analyze spiders from three sites across the Hawaiian chronosequence with substrate ages ranging from 200 to 20,000 years. To measure the extent to which chemical signatures of terrestrial substrates are propagated through higher trophic levels, we use standard stable isotope analyses of nitrogen and carbon, with plant leaves included as a baseline. The target taxa show the expected shift in isotope ratios of δ15N with trophic level, from plants to cursorial spiders to web-builders to spider eaters. Remarkably, organisms at all trophic levels also precisely reflect the successional changes in the soil stoichiometry of the island chronosequence, demonstrating how the biogeochemistry of the entire food web is determined by ecosystem succession of the substrates on which the organisms have evolved

    The Effect of Alien Predatory Ants (Hymenoptera: Formicidae) on Hawaiian Endemic Spiders (Araneae: Tetragnathidae)

    Get PDF
    The fauna of the Hawaiian Islands is characterized by spectacular species radiations with high levels of endemism, which is coupled with an extreme vulnerability to invasion by alien species. Of all alien invertebrate predators, ants are most notorious in their effect on native Hawaiian biota. This study examined distribution of ants in mesic and wet forests throughout the Hawaiian Islands and the extent to which they overlap the range of representatives of a lineage of endemic Hawaiian invertebrates, the genus Tetragnatha (Araneae: Tetragnathidae). Two species, Pheidole megacephala (F.) and Anoplolepis longipes (Jerdon), were implicated in the exclusion of native spiders from native and disturbed forest. One species, Solenopsis papuana Emery, showed extensive overlap in its range with that of the native spiders. However, we found a significant inverse relationship between the abundance of S. papuana in an area and the diversity of the indigenous Tetragnatha. Interactions between the spiders and the two species of ants, P. megacephala and A. longipes, were conducted in the laboratory and indicated that the spiders were very vulnerable to attack by these ants. Alien spiders appear to tolerate the presence of ants because they have either a strong exoskeleton, can appendotomize their legs, or else are capable of wrapping the ant in silk. Spiders that normally coexist with ants appear to use one or more of these methods for defense. The riparian existence of the genus Tetragnatha outside Hawaii may protect it from predation by ants. In Hawaii, where their habitat preference is no longer restricted to riparian sites, they may be extremely vulnerable to these alien predators

    Graduate Students Take to the Field in K–12 Education

    Get PDF
    By providing fellowships to graduate students, who then design and teach science activities, the National Science Foundation offers a way to bring the resources and expertise of universities to school children

    High-throughput sequencing for community analysis: the promise of DNA barcoding to uncover diversity, relatedness, abundances and interactions in spider communities

    Get PDF
    Large-scale studies on community ecology are highly desirable but often difficult to accomplish due to the considerable investment of time, labor and, money required to characterize richness, abundance, relatedness, and interactions. Nonetheless, such large-scale perspectives are necessary for understanding the composition, dynamics, and resilience of biological communities. Small invertebrates play a central role in ecosystems, occupying critical positions in the food web and performing a broad variety of ecological functions. However, it has been particularly difficult to adequately characterize communities of these animals because of their exceptionally high diversity and abundance. Spiders in particular fulfill key roles as both predator and prey in terrestrial food webs and are hence an important focus of ecological studies. In recent years, large-scale community analyses have benefitted tremendously from advances in DNA barcoding technology. High-throughput sequencing (HTS), particularly DNA metabarcoding, enables community-wide analyses of diversity and interactions at unprecedented scales and at a fraction of the cost that was previously possible. Here, we review the current state of the application of these technologies to the analysis of spider communities. We discuss amplicon-based DNA barcoding and metabarcoding for the analysis of community diversity and molecular gut content analysis for assessing predator-prey relationships. We also highlight applications of the third generation sequencing technology for long read and portable DNA barcoding. We then address the development of theoretical frameworks for community-level studies, and finally highlight critical gaps and future directions for DNA analysis of spider communities

    Categorization of species as native or nonnative using DNA sequence signatures without a complete reference library.

    Get PDF
    New genetic diagnostic approaches have greatly aided efforts to document global biodiversity and improve biosecurity. This is especially true for organismal groups in which species diversity has been underestimated historically due to difficulties associated with sampling, the lack of clear morphological characteristics, and/or limited availability of taxonomic expertise. Among these methods, DNA sequence barcoding (also known as "DNA barcoding") and by extension, meta-barcoding for biological communities, has emerged as one of the most frequently utilized methods for DNA-based species identifications. Unfortunately, the use of DNA barcoding is limited by the availability of complete reference libraries (i.e., a collection of DNA sequences from morphologically identified species), and by the fact that the vast majority of species do not have sequences present in reference databases. Such conditions are critical especially in tropical locations that are simultaneously biodiversity rich and suffer from a lack of exploration and DNA characterization by trained taxonomic specialists. To facilitate efforts to document biodiversity in regions lacking complete reference libraries, we developed a novel statistical approach that categorizes unidentified species as being either likely native or likely nonnative based solely on measures of nucleotide diversity. We demonstrate the utility of this approach by categorizing a large sample of specimens of terrestrial insects and spiders (collected as part of the Moorea BioCode project) using a generalized linear mixed model (GLMM). Using a training data set of known endemic (n = 45) and known introduced species (n = 102), we then estimated the likely native/nonnative status for 4,663 specimens representing an estimated 1,288 species (412 identified species), including both those specimens that were either unidentified or whose endemic/introduced status was uncertain. Using this approach, we were able to increase the number of categorized specimens by a factor of 4.4 (from 794 to 3,497), and the number of categorized species by a factor of 4.8 from (147 to 707) at a rate much greater than chance (77.6% accuracy). The study identifies phylogenetic signatures of both native and nonnative species and suggests several practical applications for this approach including monitoring biodiversity and facilitating biosecurity
    corecore