44 research outputs found
THz-Driven Coherent Magnetization Dynamics in a Labyrinth Domain State
Terahertz (THz) light pulses can be used for an ultrafast coherent
manipulation of the magnetization. Driving the magnetization at THz frequencies
is currently the fastest way of writing magnetic information in ferromagnets.
Using time-resolved resonant magnetic scattering, we gain new insights to the
THz-driven coherent magnetization dynamics on nanometer length scales. We
observe ultrafast demagnetization and coherent magnetization oscillations that
are governed by a time-dependent damping. This damping is determined by the
interplay of lattice heating and magnetic anisotropy reduction revealing an
upper speed limit for THz-induced magnetization switching. We show that in the
presence of nanometer-sized magnetic domains, the ultrafast magnetization
oscillations are associated with a correlated beating of the domain walls. The
overall domain structure thereby remains largely unaffected which highlights
the applicability of THz-induced switching on the nanoscale.Comment: 10 pages, 8 figures and 54 reference
Megahertz-rate ultrafast X-ray scattering and holographic imaging at the European XFEL
The advent of X-ray free-electron lasers (XFELs) has revolutionized fundamental science, from atomic to condensed matter physics, from chemistry to biology, giving researchers access to X-rays with unprecedented brightness, coherence and pulse duration. All XFEL facilities built until recently provided X-ray pulses at a relatively low repetition rate, with limited data statistics. Here, results from the first megahertz-repetition-rate X-ray scattering experiments at the Spectroscopy and Coherent Scattering (SCS) instrument of the European XFEL are presented. The experimental capabilities that the SCS instrument offers, resulting from the operation at megahertz repetition rates and the availability of the novel DSSC 2D imaging detector, are illustrated. Time-resolved magnetic X-ray scattering and holographic imaging experiments in solid state samples were chosen as representative, providing an ideal test-bed for operation at megahertz rates. Our results are relevant and applicable to any other non-destructive XFEL experiments in the soft X-ray range