67 research outputs found

    An optimised tissue disaggregation and data processing pipeline for characterising fibroblast phenotypes using single-cell RNA sequencing

    Get PDF
    Single-cell RNA sequencing (scRNA-Seq) provides a valuable platform for characterising multicellular ecosystems. Fibroblasts are a heterogeneous cell type involved in many physiological and pathological processes, but remain poorly-characterised. Analysis of fibroblasts is challenging: these cells are difficult to isolate from tissues, and are therefore commonly under-represented in scRNA-seq datasets. Here, we describe an optimised approach for fibroblast isolation from human lung tissues. We demonstrate the potential for this procedure in characterising stromal cell phenotypes using scRNA-Seq, analyse the effect of tissue disaggregation on gene expression, and optimise data processing to improve clustering quality. We also assess the impact of in vitro culture conditions on stromal cell gene expression and proliferation, showing that altering these conditions can skew phenotypes

    The SF3B1 inhibitor spliceostatin A (SSA) elicits apoptosis in chronic lymphocytic leukemia cells through downregulation of Mcl-1

    No full text
    The pro-survival Bcl-2 family member Mcl-1 is expressed in chronic lymphocytic leukemia (CLL), with high expression correlated with progressive disease. The spliceosome inhibitor spliceostatin A (SSA), is known to regulate Mcl-1 and so here we assessed the ability of SSA to elicit apoptosis in CLL. SSA induced apoptosis of CLL cells at low nanomolar concentrations in a dose- and time-dependent manner, but independently of SF3B1 mutational status, IGHV status and CD38 or ZAP70 expression. However, normal B and T cells were less sensitive than CLL cells (P=0.006 and P<0.001, respectively). SSA altered the splicing of anti-apoptotic MCL-1L to MCL-1s in CLL cells coincident with induction of apoptosis. Overexpression studies in Ramos cells suggested Mcl-1 was important for SSA-induced killing since its expression inversely correlated with apoptosis (P=0.001). IL4 and CD40L, present in patient lymph nodes, are known to protect tumor cells from apoptosis and significantly inhibited SSA, ABT-263 and ABT-199 induced killing following administration to CLL cells (P=0.008). However, by combining SSA with the Bcl-2/Bcl-xL antagonists ABT-263 or ABT-199, we were able to overcome this pro-survival effect. We conclude that SSA combined with Bcl-2/Bcl-xL antagonists may have therapeutic utility for CL

    Genomic Analysis of Response to Neoadjuvant Chemotherapy in Esophageal Adenocarcinoma

    Get PDF
    Neoadjuvant therapy followed by surgery is the standard of care for locally advanced esophageal adenocarcinoma (EAC). Unfortunately, response to neoadjuvant chemotherapy (NAC) is poor (20-37%), as is the overall survival benefit at five years (9%). The EAC genome is complex and heterogeneous between patients, and it is not yet understood whether specific mutational patterns may result in chemotherapy sensitivity or resistance. To identify associations between genomic events and response to NAC in EAC, a comparative genomic analysis was performed in 65 patients with extensive clinical and pathological annotation using whole-genome sequencing (WGS). We defined response using Mandard Tumor Regression Grade (TRG), with responders classified as TRG1-2 (n = 27) and non-responders classified as TRG4-5 (n =38). We report a higher non-synonymous mutation burden in responders (median 2.08/Mb vs. 1.70/Mb, p = 0.036) and elevated copy number variation in non-responders (282 vs. 136/patient, p < 0.001). We identified copy number variants unique to each group in our cohort, with cell cycle (CDKN2A, CCND1), c-Myc (MYC), RTK/PIK3 (KRAS, EGFR) and gastrointestinal differentiation (GATA6) pathway genes being specifically altered in non-responders. Of note, NAV3 mutations were exclusively present in the non-responder group with a frequency of 22%. Thus, lower mutation burden, higher chromosomal instability and specific copy number alterations are associated with resistance to NAC

    Modulation of the tumour promoting functions of cancer associated fibroblasts by phosphodiesterase type 5 inhibition increases the efficacy of chemotherapy in human preclinical models of esophageal adenocarcinoma

    Get PDF
    Background and aims: Esophageal adenocarcinoma (EAC) is chemoresistant in the majority of cases. The tumor-promoting biology of cancer associated fibroblasts (CAF) make them a target for novel therapies. Phosphodiesterase type 5 inhibitors (PDE5i) have been shown to regulate the activated fibroblast phenotype in benign disease. We investigated the potential for CAF modulation in EAC using PDE5i to enhance the efficacy of chemotherapy. Methods: EAC fibroblasts were treated with PDE5i and phenotypic effects examined using immunoblotting, immunohistochemistry, gel contraction, transwell invasion, organotypics, single cell RNAseq and shotgun proteomics. The combination of PDE5i with standard-of-care chemotherapy (Epirubicin, 5-Fluorouracil and Cisplatin) was tested for safety and efficacy in validated near-patient model systems (3D tumor growth assays (3D-TGAs) and patient derived xenograft (PDX) mouse models). Results: PDE5i treatment reduced alpha-SMA expression in CAFs by 50% (p<0.05), associated with a significant reduction in the ability of CAFs to contract collagen-1 gels and induce cancer cell invasion, (p<0.05). RNAseq and proteomic analysis of CAF and EAC cell lines revealed PDE5i specific regulation of pathways related to fibroblast activation and tumor promotion. 3D-TGA assays confirmed the importance of stromal cells to chemoresistance in EAC, which could be attenuated by PDE5i. Chemotherapy+PDE5i in PDX-bearing mice was safe and significantly reduced PDX tumor volume (p<0.05). Conclusion: PDE5 is a candidate for clinical trials to alter the fibroblast phenotype in esophageal cancer. We demonstrate the specificity of PDE5i for fibroblasts to prevent transdifferentiation and revert the CAF phenotype. Finally, we confirm the efficacy of PDE5i in combination with chemotherapy in close-to-patient in vitro and in vivo PDX-based model systems

    Telomere length predicts progression and overall survival in chronic lymphocytic leukemia: data from the UK LRF CLL4 trial

    Get PDF
    Telomere erosion and fusion play an important role in the pathology of many common human malignancies including CLL.1,2 Previous studies in CLL have shown that short telomeres defined on the basis of the median value or receiver operating characteristic (ROC) analysis are associated with unmutated IGHV genes, poor risk genomic abnormalities, genomic complexity and high expression of CD38, CD49d, and ZAP70 whereas long telomeres are associated with increasing IGHV mutational load, isolated deletion of 13q and low CD49d expression. In addition, in predominantly diagnostic or mixed patient cohorts, telomere length (TL) predicts time to first treatment and/or overall survival (OS) in multivariate analyses of models incorporating established biomarkers. 3-7 However uncertainties about the most clinically relevant measure of telomere length, the optimal choice of assay, the need for assay standardisation and the lack of published data on the prognostic value of TL in patients entered into randomised trials have hindered the implementation of TL measurement into routine clinical practice. We have attempted to address these issues by measuring telomere length using monochrome multiplex Q-PCR (MMQ-PCR) in 384 patients at randomisation into the UK LRF CLL4 phase 3 chemotherapy trial (Table S1), of whom 111 samples were also screened by single telomer

    Single-cell analysis reveals prognostic fibroblast subpopulations linked to molecular and immunological subtypes of lung cancer.

    Get PDF
    Fibroblasts are poorly characterised cells that variably impact tumour progression. Here, we use single cell RNA-sequencing, multiplexed immunohistochemistry and digital cytometry (CIBERSORTx) to identify and characterise three major fibroblast subpopulations in human non-small cell lung cancer: adventitial, alveolar and myofibroblasts. Alveolar and adventitial fibroblasts (enriched in control tissue samples) localise to discrete spatial niches in histologically normal lung tissue and indicate improved overall survival rates when present in lung adenocarcinomas (LUAD). Trajectory inference identifies three phases of control tissue fibroblast activation, leading to myofibroblast enrichment in tumour samples: initial upregulation of inflammatory cytokines, followed by stress-response signalling and ultimately increased expression of fibrillar collagens. Myofibroblasts correlate with poor overall survival rates in LUAD, associated with loss of epithelial differentiation, TP53 mutations, proximal molecular subtypes and myeloid cell recruitment. In squamous carcinomas myofibroblasts were not prognostic despite being transcriptomically equivalent. These findings have important implications for developing fibroblast-targeting strategies for cancer therapy
    corecore