24,834 research outputs found

    Stress correlations in glasses

    Full text link
    We rigorously establish that, in disordered three-dimensional (3D) isotropic solids, the stress autocorrelation function presents anisotropic terms that decay as 1/r31/r^3 at long-range, with rr the distance, as soon as either pressure or shear stress fluctuations are normal. By normal, we mean that the fluctuations of stress, as averaged over spherical domains, decay as the inverse domain volume. Since this property is required for macroscopic stress to be self-averaging, it is expected to hold generically in all glasses and we thus conclude that the presence of 1/r31/r^3 stress correlation tails is the rule in these systems. Our proof follows from the observation that, in an infinite medium, when both material isotropy and mechanical balance hold, (i) the stress autocorrelation matrix is completely fixed by just two radial functions: the pressure autocorrelation and the trace of the autocorrelation of stress deviators; furthermore, these two functions (ii) fix the decay of the fluctuations of sphere-averaged pressure and deviatoric stresses for windows of increasing volume. Our conclusion is reached because, due to the precise analytic relation (i) fixed by isotropy and mechanical balance, the constraints arising via (ii) from the normality of stress fluctuations demand the spatially anisotropic stress correlation terms to decay as 1/r31/r^3 at long-range. For the sake of generality, we also examine situations when stress fluctuations are not normal

    A finite difference scheme for the equilibrium equations of elastic bodies

    Get PDF
    A compact difference scheme is described for treating the first-order system of partial differential equations which describe the equilibrium equations of an elastic body. An algebraic simplification enables the solution to be obtained by standard direct or iterative techniques

    A compact finite difference scheme for div(Rho grad u) - q2u = 0

    Get PDF
    A representative class of elliptic equations is treated by a dissipative compact finite difference scheme and a general solution technique by relaxation methods is discussed in detail for the Laplace equation

    Exploring Challenges in Conducting E-Mental Health Research Among Asian American Women

    Get PDF
    In this discussion paper, we explore the challenges of conducting e-mental health intervention research among Asian American women and propose a model for addressing these barriers. Based on an extensive literature review, we identify two main types of barriers to conducting e-mental health intervention research among Asian American women: recruitment barriers and adherence barriers. Recruitment barriers are further subcategorized into those related to (1) stigmatized cultural beliefs about mental illness and mental health services; (2) lack of awareness about mental health services; and (3) language barrier. As to adherence barriers, the two identified subtypes concern (1) acuity and severity of mental health condition; and (2) lack of time. In order to enhance recruitment and adherence in e-mental health intervention research among the studied population, we formulate the following three main research strategies, namely: (1) considering the cultural and social contexts of Asian American women in the development of e-mental health interventions; (2) determining appropriate program length; and (3) conducting feasibility studies to test e-mental health interventions. We suggest that nurse researchers integrate our proposed model in conducting e-mental health interventions among Asian American women. Our proposed model also implies that nurses play an important role in encouraging Asian American women’s acceptance of and adherence to e-mental health interventions. In order to overcome the obstacles to conducting e-mental health research among Asian American women, we recommend that nurses familiarize themselves with credible, relevant, and evidence-based e-mental health resources and integrate online mental health services and information within their nursing practice

    A Solution of the Maxwell-Dirac Equations in 3+1 Dimensions

    Get PDF
    We investigate a class of localized, stationary, particular numerical solutions to the Maxwell-Dirac system of classical nonlinear field equations. The solutions are discrete energy eigenstates bound predominantly by the self-produced electric field.Comment: 12 pages, revtex, 2 figure

    HST and Spitzer point source detection and optical extinction in powerful narrow-line radio galaxies

    Get PDF
    We present the analysis of infrared HST and Spitzer data for a sample of 13 FRII radio galaxies at 0.03<z<0.11 that are classified as narrow-line radio galaxies (NLRG). In the context of the unified schemes for active galactic nuclei (AGN), our direct view of the AGN in NLRG is impeded by a parsec-scale dusty torus structure. Our high resolution infrared observations provide new information about the degree of extinction induced by the torus, and the incidence of obscured AGN in NLRG. We find that the point-like nucleus detection rate increases from 25 per cent at 1.025μ\mum, to 80 per cent at 2.05μ\mum, and to 100 per cent at 8.0μ\mum. This supports the idea that most NLRG host an obscured AGN in their centre. We estimate the extinction from the obscuring structures using X-ray, near-IR and mid-IR data. We find that the optical extinction derived from the 9.7μ\mum silicate absorption feature is consistently lower than the extinction derived using other techniques. This discrepancy challenges the assumption that all the mid-infrared emission of NLRG is extinguished by a simple screen of dust at larger radii. This disagreement can be explained in terms of either weakening of the silicate absorption feature by (i) thermal mid-IR emission from the narrow-line region, (ii) non-thermal emission from the base of the radio jets, or (iii) by direct warm dust emission that leaks through a clumpy torus without suffering major attenuation.Comment: 18 pages, 7 figures, 8 tables, accepted for publication in MNRA

    Limits on entanglement in rotationally-invariant scattering of spin systems

    Full text link
    This paper investigates the dynamical generation of entanglement in scattering systems, in particular two spin systems that interact via rotationally-invariant scattering. The spin degrees of freedom of the in-states are assumed to be in unentangled, pure states, as defined by the entropy of entanglement. Because of the restriction of rotationally-symmetric interactions, perfectly-entangling S-matrices, i.e. those that lead to a maximally entangled out-state, only exist for a certain class of separable in-states. Using Clebsch-Gordan coefficients for the rotation group, the scattering phases that determine the S-matrix are determined for the case of spin systems with σ=1/2\sigma = 1/2, 1, and 3/2.Comment: 6 pages, no figures; v.2: sections added, edited for clarity, conclusions and calculation unchanged, typos corrected; v.3: new abstrct, revised first two sections, added reference

    Proposed direct test of a certain type of noncontextuality in quantum mechanics

    Full text link
    The noncontextuality of quantum mechanics can be directly tested by measuring two entangled particles with more than two outcomes per particle. The two associated contexts are "interlinked" by common observables.Comment: 9 pages 2 figure

    Simultaneous description of four positive and four negative parity bands

    Get PDF
    The extended coherent state model is further extended in order to describe two dipole bands of different parities. The formalism provides a consistent description of eight rotational bands. A unified description for spherical, transitional and deformed nuclei is possible. Projecting out the angular momentum and parity from a sole state, the Kπ=1+K^{\pi}=1^+ band acquires a magnetic character, while the electric properties prevail for the other band. Signatures for a static octupole deformation in some states of the dipole bands are pointed out. Some properties which distinguish between the dipole band states and states of the same parity but belonging to other bands are mentioned. Interesting features concerning the decay properties of the two bands are found. Numerical applications are made for 158^{158}Gd, 172^{172}Yb, 228,232^{228,232}Th, 226^{226}Ra, 238^{238}U and 238^{238}Pu, and the results are compared with the available data.Comment: 36 pages, 13 figures, 12 table
    corecore