28,508 research outputs found

    Computations and turbulent flow modeling in support of helicopter rotor technology

    Get PDF
    Efforts continue to investigate the applicability of the Deiwert's time dependent numerical airfoil calculation code to the simulation of two dimensional airfoil flows with large amounts of separation present. A modified logarithmic region mixing length term produced substantial differences in the calculated flow fields for the large separation of the M=0.4, high angle of attack cases. Reasons are given for interest in applying that model to previously investigated cases of the 64A010 airfoil section at Mach number 0.8 for angles of attack of 4 deg and 6.2 deg. The effects of these turbulence models at alterations and the time dependent behavior from impulsively started conditions are discussed

    Airborne measurement of atmospheric turbulence

    Get PDF
    A system capable of making measurements of fluctuating atmospheric density is described. Spatial scales required in assessing the quality of coherent radiation propagation are discussed. The special sensors, aircraft installation, data reduction procedures, and other special requirements necessary to obtain meaningful atmospheric turbulence data are also described. The spectral distribution of density fluctuation are presented

    Calculation of shock-separated turbulent boundary layers

    Get PDF
    Numerical solutions of the complete, time-averaged conservation equations using several eddy-viscosity models for the Reynolds shear stress to close the equations are compared with experimental measurements in a compressible, turbulent separated flow. An efficient time-splitting, explicit difference scheme was used to solve the two-dimensional conservation equations. The experiment used for comparison was a turbulent boundary layer that was separated by an incident shock wave in a Mach 2.93 flow with a unit Reynolds number of 5.7 x 10 to the seventh power m. Comparisons of predicted and experimental values of surface pressure, shear stress along the wall, and velocity profiles are shown. One of the tested eddy-viscosity models which allows the shear stress to be out of equilibrium with the mean flow produces substantially better agreement with the experimental measurements than the simpler models. A tool is thereby provided for inferring additional information about the flow, such as static pressures in the stream, which might not be directly obtainable from experiments

    An application of LANDSAT multispectral imagery for the classification of hydrobiological systems, Shark River Slough, Everglades National Park, Florida

    Get PDF
    Multivariant hydrologic parameters over the Shark River Slough were investigated. Ground truth was established utilizing U-2 infrared photography and comprehensive field data to define a control network which represented all hydrobiological systems in the slough. These data were then applied to LANDSAT imagery utilizing an interactive multispectral processor which generated hydrographic maps through classification of the slough and defined the multispectral surface radiance characteristics of the wetlands areas in the park. The spectral response of each hydrobiological zone was determined and plotted to formulate multispectral relationships between the emittent energy from the slough in order to determine the best possible multispectral wavelength combinations to enhance classification results. The extent of each hydrobiological zone in slough was determined and flow vectors for water movement throughout the slough established

    Coal-rock interface detector

    Get PDF
    A coal-rock interface detector is presented which employs a radioactive source and radiation sensor. The source and sensor are separately and independently suspended and positioned against a mine surface of hydraulic pistons, which are biased from an air cushioned source of pressurized hydraulic fluid

    Summary of all cycle II.5 shear and boundary layer measurements, aerodynamics

    Get PDF
    The two measurement systems were used to measure mean velocity and velocity, mass flux, and total temperature fluctuations in the turbulent boundary on the fuselage of a KC-135 aircraft. The boundary layer thickness ranged between about 20 and 30 cm for the range of flight Mach numbers from about 0.25 to 0.85 and Reynolds numbers between 3 and 6 x 10 to the 6th power/m. The adaptation of each system for use in airborne applications is discussed. The data obtained from each system are given and compared with each other and they indicate that the two systems represent viable ones for use in future airborne turbulence experiments

    Wave propagation in stepped and joined shells Annual report, 1 Sep. 1968 - 1 Sep. 1969

    Get PDF
    Shell impact response and wave propagation in cylindrical and conical shells by experimental and analytical method

    On the calculation of supersonic, separating, and reattaching flows

    Get PDF
    A method is developed for solving the laminar and turbulent compressible boundary-layer equations for separating and reattaching flows. Results of this method are compared with experimental data for two laminar and three turbulent boundary-layer, shock-wave interactions. Several Navier-Stokes solutions were obtained for each of the laminar boundary-layer, shock-wave interactions considered. Comparison of these solutions indicates a first-order sensitivity in C sub f to the computational mesh selected in both the viscous and inviscid portions of the flow

    Computations and turbulent flow modeling in support of helicopter rotor technology

    Get PDF
    The angle of attack (AOA) tandem cavity wind tunnel experiment was prepared. Actual wind tunnel testing started shortly after the beginning of 1985. A multi-probe aerodynamic rake was designed and installed for use in surveying the shear layers present over the open cavity on the Kuiper Airborne Observatory (KAO). The nature of the behavior of the thermal environment within the KAO cavity at operational altitudes was determined. Assistance was given in the design of the cavity for the University of Denver radiometer. Attempts to distinguish between the optical terms of blur circle size (or image size) and the term due to jitter were discussed

    Aerodynamics of seeing on large transport aircraft

    Get PDF
    Data were obtained in the full scale flight environment of the Kuiper Airborne Observatory (KAO) on the nature of turbulent shear layer over the open cavity. These data were used to verify proposed aerodynamic scaling relationships to describe the behavior of the turbulent layers and to estimate the optical performance of systems of various wavelengths operating within the KAO environment. These data and wind tunnel data are used to scale the expected optical effects for a potential stratospheric observatory for infrared astronomy (SOFIA) in which a telescope approximately 3.5 times larger than that on the KAO is envisioned. It appears that the use of combinations of active and passive aeromechanical flow control techniques can improve the optical behavior of systems in the SOFIA environment. Experiments to verify these potential improvements can be performed on the KAO with sufficient modifications to the cavity and aero-mechanical technique installations
    corecore