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SUMMARY

A method is developed for solving the laminar and turbulent compressible
boundary-layer equations for separating and reattaching flows. Results of
this method are compared with experimental data for two laminar and three tur-
bulent boundary-layer, shock-wave interactions. Several Navier-Stokes solu-
tions were obtained for each of the laminar boundary-layer, shock-wave inter-
actions considered. Comparison of these solutions indicates a first-order
sensitivity in Cf to the computational mesh selected in both the viscous .and
inviscid portions of the flow. '

Three turbulent, boundary-layer, shock-wave interactions were considered,
one unseparated interaction at M = 3 and two separated interactions at
M = 1.47 and 3. Boundary-layer theory appeared to be adequate to describe the
first two of these interacting flows. However, for the separated interaction
at M = 3, .'boundary-layer theory failed.

Comparison of the present boundary-layer solutions with the Navier-Stokes
solutions and with data for a given Mach number indicates, that as long as
|ve/ue| is small, the boundary-layer approximation yields solutions whose
accuracy is comparable to the Navier-Stokes solutions. A more general param-
eter might indicate boundary-layer theory to be valid if some function of Mach
number times |ve/ue| is small.

Since the present boundary-layer solution is an inverse method, that is,
Cf(x) is specified rather than P(x), a criterion for selecting the correct
Cf distribution is required. It was originally anticipated that this cri-
terion would be supplied by coupling the boundary-layer solutions to a shock-
capturing, finite-difference solution to the inviscid-flow equations.
Although several modes of coupling have been attempted, only slight success
has been obtained to date because the shock-capturing scheme imposes a rela-
tively thick shock wave on the viscous flow, which in turn requires an almost
discontinuous change in flow angle at the boundary-layer edge. The inconsis-
tency of this behavior in the two solutions has thus far obstructed attempts
to obtain meaningful coupled solutions. Therefore, a truncated Navier-Stokes
system of equations was examined and. it appears that this technique circum-
vents these difficulties.

INTRODUCTION

It is generally agreed that the problem of separating and reattaching
flows is one of the more challenging and technologically relevant problems in
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computational fluid mechanics. In recent, years, the computational attack has
taken place on two fronts - the engineering approach by way of boundary-layer
theory and the pure numerical approach by way of the Navier-Stokes equations.
Reasonably complete summations of the status of these two approaches up to
about 1970 are contained in references 1 to 3. During the past two or three
years, substantial additional progress has been made in the boundary-layer
theory approach by Klineberg and Steger (ref. 4) and Carter (ref. 5), and in
the Navier-Stokes equation approach as represented by references 6 through 11.
The basic position taken by each of these schools of thought can be summarized
as follows: the Navier-Stokes equations are undoubtedly the correct equations
for describing the flow fields in question and, since we can solve them, why
settle for an approximation? The boundary-layer contingent would concur with
the above but they would add that the cost of Navier-Stokes solutions both now
and in the foreseeable future is far too high to permit their use as design
tools.

The present study examines these positions in some detail. In particular,
we are concerned with establishing, at least qualitatively, the limits of
applicability of the boundary-layer approximation for both laminar and turbu-
lent separating and reattaching flows. Secondly, we are concerned with the
development of an economical and reasonably accurate engineering calculation
scheme for such flows.

SYMBOLS

C Chapman-Rubesin constant

C,. skin-friction coefficient, C.. = T /(l/2)p u2
t i w o o

DC difference coefficient multiplying quantities at x

DM difference coefficient multiplying quantities at x-Ax

DP difference coefficient multiplying quantities at x+Ax

E Eckert number, u2/2H ' ' ,
e e

F defined in equation (12)

f dimensionless stream function

H total enthalpy h + (u2/2)

h static enthalpy .

$• mixing length

M initial Mach number
o
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M number of nodes In x direction
1 . . . . . . . .

N number of nodes in y direction

p pressure .

Pr Prandtl number

Pr turbulent Prandtl number

R ' gas constant

r body 'radius

S entropy

T ' temperature

U defined in equation (12)

u velocity component in x direction

v velocity component in y direction

x streamwise variable

y cross stream variable

. ct weighting factor in type dependent differencing

B boundary-layer pressure gradient parameter

Y ratio of specific heats

A difference in quantities

5 boundary- layer thickness or stream angle

6* displacement thickness

e residual error

p density

a defined in equation (18)

y viscosity or Mach angle (y

T shear stress

2£ due
= — - --—
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£ transformed 'x variable -

r\ ' transformejd ' y yariable ' ' . ' " ' ! •

( )' differentiation with respect to n

Subscripts

e evaluated at boundary-layer edge '

f evaluated at final conditions downstream of interaction

i evaluated at ith x point

j evaluated at jth y point

i . lower boundary : - . - . • ' • •

o . evaluated on initial line . .

t evaluated at stagnation conditions

u • upper boundary

w evaluated at wall conditions

"' -ANALYSIS" ' '• /

Viscous-Flow Calculations

The procedure used to solve the viscous-flow portion of the calculation
is a generalized Galerkin method (refs. 12 and 13) applied to the-boundary-
layer equations. The equations considered are

3H . 3H
PU + PV

3upu —

3
3y

.JiUl +
Pr 3y

3 pur 3pvr '
3x 3y

. 3u dP . 3 / 3u . \+ pv -r— = — r- + — (u h PT)3y dx 3y V 3y /

U A 1\ 3u2

2V ~ Pr/ 3y •*.f4'ay|
1 3H/

PrT^I7

pRT

PT = pfc2
3y 3y

1
Prn

(1)

(2)

(3)

(4)

(5)
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Only adiabatic flows with Pr = Pr^ = 1 are treated here; hence equation (3)
is replaced by h + (u2/2) = const. To suppress the streamwise growth of the
boundary layer and to facilitate initialization, equations (1) and (2) are com-
bined under the Levy-Lees-Dorodnitsyn transformation (x,y) -»• (C»n) where

o po

/2T

pI pu dy
u

which re sults in

(Cf")' + ff"
/p* \
I—- f'2)
'p • /

KlPt - 25 f fi-- f» •£ - 0 (6)

kwhere Kj = v2£/vier and the primes indicate differentiation with respect to
H. The following analysis closely parallels that of Kendall and Bartlett
(ref. 13). The present method extends that of reference 13 to treat separated
flow and is restricted to calorically and thermally perfect gases.

y-dependent differencing—To apply the generalized Galerkin method, the
approximations for the stream functions, velocity, and shear between adjacent
nodes are chosen as

f + f'*„ + fj

f ' + f 'An + f ' ' ' 3— + f " ' n
j j n j 3 rj+l 6

f l i t ^
J+l 24

f« _ fit + ft i
J+l , J 4

f , j,

(7)

(8)

(9)

These relations are obtained by a Taylor series expansion to terms including
TV TV
f and substitution of f" = (f"| - f'")/An. Equations (7) to (9) are

substituted in equation (6) and the results integrated with, respect to a unit
square-wave weighting function from n.i to n.. to yield:

Cf" + ff
M+l

f
-2C

J

f • |il dn + 2C f" (10)
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where

and

m-Anlfj + fjfUf»'£ij-+f';j^

XP3 =
llAn
15

f 1f 66An2
~315~

f , i f 5Anf J+l 463)

T f k x P K = f'XPl + f''XP2 + f!"XP3 + f!" .XP4 = f f '2dn ' • • ' ' ) .
f ^ j - j j j j + l J ' • ' • ' • -
k-i - • ' ' . •

The two terms remaining to be integrated are discussed under x -Dependent Dif-
ferencing. This procedure, yields a consistent differencing method that is
fourth-order accurate in n and equations (7) to (9) ensure that the stream
function, velocity, and shear are defined everywhere (not only at nodal points)
and are continuous, everywhere. Equations (7) .to (10) provide a sequence of
4XN-1) equations in 4N unknowns, where- N is the number of nodes, normal, to
the wall. Note that 3(N-1) of these equations are linear algebraic equations
while (N-l) equations are nonlinear ordinary differential equations. The
remaining four equations are imposed as boundary conditions:

= f = 0 at n = 0

1,- f".= 0 " at ..n -

The complete system is solved by use of a Newton-Raphson iteration scheme by
differentiating with resi

rated flows 3, to yield

differentiating with respect to , f., f
J

, . . . , ; £ ' " , - f j ; j f _ and for sepa-

T/£\AJT" "•j(f)Af = -e
J J

•
Jacobian, . e is the residual error, and Af. is

•
where J(f) is the (4N

the incremental change in the solution parameters per iteration.

To speed up the iteration process, the equations are ordered so that "the
3 (N-l) linear algebraic equations plus the boundary condition f'(0).= 0 .•
occupy the first 3N-2 matrix rows. The matrix .has the partitioned form (see
ref. 14):

Ll L2 Af,
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The submatrix LI is a function of the nodal configuration only and can be
inverted just once and used in all subsequent calculations. Formal manipula-
tion and back substitution yield . -

The matrix I NL2 - Nl̂ l,. L2j must be inverted every iteration, but it is only

of order (W-2). -

K-dependent differencing— The streamwise differencing is carried out in a
manner similar to that of reference 4. The term

-25 | f' - dn

is decomposed and integrated by parts as

(
nj+l _.

•' ' 'f ' lpPfJ^ + DCq-+ DMf|_Jdn +1 j - .

.. • - ' '
r

-[DP £ f*+1 jXPK - + D C ' ' - f .XPK

- '

where, for-attached flow, •

DP = 0 , DC = 2/ln e'j/C-̂ j » DM = -DC"

and for separated flow

DP = (l-a)/£n £.,,/£. ; a = 1 for f > 0.01

DM = -(l-hx)/£n Si/S^j ; a = lOOf , -0.01 if < 0.01

DC = -(DP + DM) ; a - -1 , f' < -0.01 '

This procedure incorporates backward differencing when the flow is in the.
mainstream direction, forward differencing when the.; flow is reversed, and .a
central difference on and near the zero velocity streamline. The remaining
term is decomposed as above, integrated by parts, and expanded In Taylor
series to yield:
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•i: f-44 DC
'3+1

+ DP

. n

+ DM

j

'3+1

where, for attached flow, excluding the points of separation and reattachment
yields

DC = 2/2,n , DP = 0 , DM = -DC

and for separated flow,

DC DP -DP

As shown, a straightforward marching routine is used in the attached flow
while, for separated flow, the entire separation region must be relaxed
simultaneously.

The present method requires no under relaxation and a typical well-
separated flow with 20 n points and 10 £ points can be relaxed to a maximum
residual OCIO"1*) in about 22 iterations compared to 800 for the method of
reference 4 and 100 to 200 iterations for the method of reference 5. Although
the present method may require more operations per iteration, it is at least
competitive with other methods cited. The speed of the present method
primarily results from the splined Taylor series used as approximating func-
tions. First, they provide an effective fourth-order-accurate, finite-
difference representation in the y direction which permits a relatively
sparse nodal array to yield high accuracy and, second, the spline character
enhances the stability markedly.

Inviscid-Flow Equations and Coupling Schemes .,

In this section, the technique used to solve for the inviscid flow field
and to obtain the effects due to the boundary layer on'that flow is described.
A technique for obtaining fully coupled interactive solutions of the inviscid
and viscous flows is being developed, but is not sufficiently advanced to '
discuss here. Rather, at this point, boundary-layer solutions for a pressure
and skin-friction distribution, appropriate to the data of reference 13, have
been obtained and then various schemes for. matching this solution with the •
inviscid flow have been investigated. The inviscid flow is for supersonic
flow between a shock-wave generator and some matching line given by the
boundary-layer solution. . . .

Inviscid-flow equations—The basic equation used in the inviscid flow-
field analysis is similar to that of reference 15. The key features, however,
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are described here for completeness. - In a .Cartesian coordinate system, the1

steady, Inviscld, two-dimensional fluid'dynamic equations (continuity, x and y
momentum) are written in conservative form as

U + F
x --

0 (ID

The three components of the vectors U and F, which represent the conservative
variables, are defined as

pu

kp-fpu2

puv

-pv

. puv

kp+pv2
(12)

where k = (Y-l)/2y. The units of these equations were normalized by dividing
both pressure and density by their respective stagnation conditions, while the
velocities were divided by .the maximum adiabatic velocity. With this normaliz-
ation and the further restriction that the flow be adiabatic, the energy equa-
tion can be written:

U2 + V2' (13)

To calculate two-dimensional flow between ;two nonparallel walls, in this
case the shock-wave generator and the lower coupling boundary, it is most con-
venient to normalize the coordinate system so that the upper and lower bound-
aries become parallel. The transformed coordinates are

- I 4 (.14)

where yu:= yu(x) and
(11) results in

where U = £U arid F = F +
differentiation with respect to

i. Applying :this transformation to. equation

U + F = 0

-,
) - yu I. (In
.) -̂

(15)

i
this section, the primes denote

The above.differential equation is,integrated using MacCormack's second-
order-accurate differencing scheme (see ref. 15). For flow-field points, that
is, points on neither the upper nor lower boundary, the predictor and corrector
equations are -

.u.n+l
j

(predictor) (16)

Subscript j identifies particular points on a data line as follows: 1,
lower body point; 2, 3, N , flow-field points; and

point. . ,The data lines are identified by the superscripts
bars indicate a predicted value.

N , upper body

n and n+1. The
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(17)

The above equations are applied to the three'vector components of U.

The step size in the x direction is found by determining the maximum
slope of the characteristic surface, inclined at the local Mach angle y rela-
tive to the local stream angle 6, for each point as follows:

*(±) = |tan(±u + 5)*1 (18)

where the ± denote positive and negative directions of the Mach angle from
each point. The entire data line n is surveyed to determine |an(±)|

J nl3X

Depending on the sign associated with the maximum slope, Ax is found from

or

Ax(+) - K

Ax(-)

n+1 n+1 n+

n n

max

_n+l n+1 n+1 n

n

(19)

(20)

where K is a constant that controls the step size. If K = 1, the CFL con-
dition is satisfied identically.

Application of the finite-difference equations (16) and (17) yields pre-
dicted and corrected values of the three components of the conservative-
variable vector U on the new data line. These must be decoded after the
predictor step and corrector step in turn. This decoding into physical vari-
ables is accomplished by solving the following:

U,,

n+1

u

P =

U2 + /Ug - 4U2k(l-k)(l-v2)

n+1

n+1

J

; p = p(l-u2-v2)

(21)

Constructing a technique that will give a physically realistic solution
of the conditions on a solid boundary is difficult in a predictor-corrector
sequence since strict application requires an imaginary point inside the body.
Abbett (ref. 16) developed a technique that satisfies the surface tangency
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condition and relies on information provided by the finite-difference equa-
tions. For the upper and lower surfaces, respectively, the predictor equations
are written as

_ n /Ax\ n n
~ UN , VAC'' N FN -i

and - 5

n+l Tn. Axul = ul ~ Jg

Modified corrector equations that maintain second-order accuracy at the
upper and lower surfaces, respectively, are given by

n+1 11 n+1 M
A? NC Nc-l AC

and

Tin+1Ul " ! l ~ A

After the corrector equations are decoded at the boundaries, the flow
variables will not necessarily satisfy the boundary conditions at the wall.
The technique for satisfying the boundary conditions depends on a scheme for
matching the boundary-layer solution.

The coordinates of the upper boundary are determined from

y = y + x tan 6 (26)Ju Ju uo

where 6U is the deflection angle of the upper wall. When matching to the
output of the boundary-layer solution, the lower boundary is specified by a
table of coordinates. These coordinates are used to fit a parabola of the
form

y = ax2 + bx -I- c (27)

between each set of three consecutive points. The three points used to deter-
mine the coefficients in the above equation were chosen so that two of the
points should have x > xn+1 . The slope of the boundary is found from the
derivative of equation (27) .

Matching scheme — Two techniques for matching the inviscid and viscous
solutions were investigated: (1)' requiring tangency along the matching con-
tour and (2) forcing the inviscid solution to agree with the u and v veloc-
ity components from the viscous solutions along the matching line. For the
first matching scheme, the flow angle from the decoded corrector equations on
the boundary is found from

6 = tan"1 (28)
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This flow angle is compared with the slope of the boundary at x . If the
two angles disagree, then a Prandtl-Meyer turning is applied at the new body
point using . . . . . . . . .

(A/2) - 1JA62 (29)
J • • . ,

where AS is the difference in the two angles and •

. (30)

Note that the sign of A6 will result in either "an expansion (A6 > 0) or an
isentropic compression (A6 < 0) and the pressure, resulting from equation (19) ,
is taken as the predicted pressure on the body at data line N+l. The density
is found from . .

-S-Sr/cv
 : . . - . . -

where C = e and Sr is some reference entropy. Once p and p are
known at the boundaries, the total velocity is obtained from

. • q -VI -. (p/p) " ; - (32)

The velocity components then result from the tangency condition at the.bound-?
aries. This technique was applied on the upper boundary throughout both
matching schemes investigated. With this matching scheme, two different
matching boundaries were considered - 6* and an arbitrary streamline where the
Mach number remained supersonic throughout"the interaction. Results are pre-
sented only for the latter case since similar results were obtained for both
matching contours.

The second matching scheme, forced the inviscid solution to .match values
of u and v given by the viscous solution along the matching contour, here
taken as the boundary-layer edge. This technique does not impose the tangency
condition along the matching boundary, but rather allows for mass exchange
from the inviscid to viscous portions of the flow, a physically realistic
situation. .Since u and-v along the,matching contour are now taken to be .
known, these values are used in the decode-equations (21) to solve for " pn+l
and' pn+1 . • - , - ' ' - . - • •

Navier-Stokes Solutions

Solutions to the Navier-Stokes equations presented here were obtained
from several sources. Solutions of MacCormack (ref. 3), MacCormack and Baldwin
(ref. 11), Messina (unpublished), and Skoglund and Gay (ref. 6) were obtained
from the sources cited, while additional solutions .were obtained in the.pres-
ent study using the computer codes of MacCormack and Baldwin (ref. 11) and
Carter (ref. 10).'
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Space does not permit a detailed description of the differences and simi-
larities of the several codes considered. There are, however, some striking
differences and similarities in the several solutions presented which warrant
discussion in some detail. Figure 1 shows the envelope of four Navier-Stokes
solutions obtained from references 3 and 10 to 12, together with the data of
Hakkinen et al. (ref. 17), for an unseparated, laminar-boundary-laver, shock-
wave interaction at M = 2. Two points immediately come to mind: first, the
large discrepancy in skin friction and the relatively small discrepancy in sur-
face pressure. . At first glance, this implies a low sensitivity of the pressure
distribution to the skin-friction distribution and a lack of uniqueness in the
Navier-Stokes solutions. However,-a sequence of solutions obtained here using
MacCormack and Baldwin's (ref. 11) code, with successive mesh refinement in
the outer inviscid flow, shows differences in Cf of the same order as those
shown in figure 1. This arises from the fact that for the coarsest mesh con-
sidered, the externally generated shock wave takes on a thickness that, when
projected onto the boundary layer, is of the same order as the length of inter-
action. The viscous flow is then responding to a continuous compression
rather than an imposed shock wave. As the nodal structure was refined, the
skin-friction distribution approached a single curve.

Figure 2 shows a similar envelope of Navier-Stokes solutions obtained
from references 6, 8, 10, and 11, together with experimental data for a well-
separated, laminar-boundary-layer, shock-wave interaction (ref. 17). The
results here are similar to those discussed above and the same conclusions can
be drawn.

The point of the foregoing presentation is not to show how poorly Navier-
Stokes solutions perform but rather to induce the user of Navier-Stokes codes
to examine his results critically and, in particular, to examine the computa-
tional mesh dimensions in the light of the smallest relevant physical scale in
the problem under consideration.

In subsequent sections, the boundary-layer calculation scheme developed
is compared to the Navier-Stokes solutions of MacCormack (ref. 3).

' . " . . . . ' - i
RESULTS • ,

The results of the inverse boundary-layer method are compared with
Navier-Stokes solutions and with experimental data. The flows considered all
occur on a flat plate and the pressure rise is caused by an externally gen-
erated shock wave. The specific flow parameters and experiments considered
are listed in table 1. .

Table 1
Reference

17*
17*
18
19
19*

M
OO

2
2
1.47
2.93
2.93

Re

1.84xlO:>

1.96xl05

4xl06/ft
5.7xl07/m .
5.7xl07/m

pf/po
1.2
1.4
2.25
2.5
5.0

Remarks

Laminar
Laminar
Turbulent
Turbulent
Turbulent

*Navier-Stokes solutions available.
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Finally, we will describe the progress made, to date, in coupling the inverse
boundary-layer method to the inviscid calculation scheme to provide a complete
flow-field prediction method.

. . Laminar-Boundary-Layer, Shock-Wave Interaction

Two laminar-boundary-layer, shock-wave interactions are considered: an
unseparated interaction at M =2.0 having an overall pressure rise Pf/Po .of
1.2 and a well-separated interaction at M = 2.0 having an overall pressure
rise Pf/Po of 1.4. These two interactions correspond to the experiments of
Hakkinen et al. (ref. 17), as shown in figures 6a and 6b, respectively, of
that report. For convenience, these interactions will be called Hakkinen 6a .
and 6b.

Note that in this and all subsequent comparisons with Navier-Stokes solu-
tions, the skin-friction distribution obtained from the Navier-Stokes solution
was input to the inverse-.boundary-layer method. .This procedure ensures that a
comparison of other parameters, that is, velocity and pressure distributions,
provides a true measure of the validity of the boundary-layer assumption,
without the peripheral considerations of downstream boundary conditions or
matching conditions-between viscous and inviscid flow. However, some differ-
ences can arise even in this case because of the order of the difference
approximation used. The present inverse method is third-order accurate in
wall shear as opposed to first-order accuracy imposed by assuming a linear
variation of velocity with distance away from the wall in the Navier-Stokes
solutions. An examination of the differences attributable to this assumption

• indicates:.that Cf. can vary ±10 percent for the same velocity profile, depend-
ing, on the order of curve fit used to deduce the derivative at the wall.

. Figure 3 compares the pressure distribution obtained from present
methods with a refined mesh Navier-Stokes calculation using Hung and
MacCormack's code (ref. 9.) for Hakkinen 6a. The two solutions are nearly
indistinguishable everywhere and they.are in reasonable agreement with the
data. In figure 4, the velocity distributions at the x location correspond-
ing to the minimum value of Cf (fig. 3) are compared. The differences
between the present method and MacCormack's solution are not large and are
largely attributable to differences in transport properties, that is, Pr = 1
and y/y0 = T/T0 in the present method and Pr = 0.72 and y from the
Sutherland'law-in MacCormack's code.

Figure 5 shows the streamwise pressure distribution for- Hakkinen 6a, for
y = 0, 6/2", <5, as computed by MacCormack (ref. 3). These curves are essen-
tially indistinguishable and hence, within the boundary layer, 3p/3y ~ 0.
This, in turn, implies a trivial solution to the y momentum equation which, ,
from the usual boundary order-of-magnitude arguments, indicates that the
boundary-layer equations are adequate for this flow.

Figure 6 compares the pressure distribution obtained from the present
method with that of MacCormack's solution for Hakkinen 6b. For this case, a
slight difference in surface pressure distribution is obtained near x/L = 0.15.
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Figure 7 compares the velocity profiles obtained from the present method and ..
from MacCormack's method for Hakkinen 6b. Differences between the profiles,
are explicable in terms of differences in transport properties discussed
previously. Figure 8 shows the streamwise pressure distributions for Hakkinen
6b, as computed by MacCormack (ref. 3). This figure shows the normal pressure
gradient developing in about the same region noted in figure 6 (x/L =0.15
corresponds to x/Ax = 20). This normal pressure gradient appears to be an
inertial effect associated with strong streamline curvature in the outer por-
tion of the boundary layer where M(y) -»• Me. For this case, the boundary-
layer method predicts a relatively large value of |ve/ue| (not shown), which
indicates the beginning of a breakdown of the boundary-layer approximation.

Turbulent Boundary-Layer, Shock-Wave Interaction

The question of the validity of boundary-layer theory in turbulent
boundary-layer,' shock-wave interactions is somewhat less clear than for lami-
nar interactions. This is true for three reasons. First, few Navier-Stokes
solutions with simple turbulence models are available for comparison (ref. 18).
Second, the current turbulence models are demonstrably inadequate for flows
with rapidly changing boundary conditions and, third, only a few experiments "
are available in supersonic turbulent flow which are sufficiently detailed to
permit a useful comparison. Because of these facts, only a cursory comparison
of results of the present method with both Navier-Stokes solutions and experi-
mental data-can be made.

Figure 9 compares the present method with the data of Seddon (ref. 19), .
for a normal shock-wave, turbulent-boundary-layer interaction with an initial
Mach number of 1.47. For this case, the experimentally determined value of
Cf(x) was input to the inverse, boundary-layer method in the attached-flow
regime. For the reversed-flow region, where no data were available, three
estimates of C^ were made (defined by the solid, dashed, and dot-dashed
lines in the upper half of figure 9). The corresponding pressure distributions
are shown in the lower half of figure 9. Two conclusions can be drawn from
this figure: first, the boundary-layer equations are capable of reproducing
the observed behavior and, second, the pressure distribution is sufficiently
sensitive to variations in Cf to permit a coupled solution to distinguish
between similar distributions of skin-friction coefficient.

Figure 10 shows a comparison of a direct calculation using the present
method.with the data of reference 20. The experimental skin-friction distribu-
tion shown was deduced from the measured mean velocity profiles using the
method of reference 21. These data were taken at a free-stream Mach number of
2.93 and a unit Reynolds number of 5.7*107 m"1. The pressure rise was effected
by a shock generator set at 7° incidence to the oncoming flow. As noted above,
the predicted results were obtained for this case by calculation in the direct
mode, that is, P(x) was specified and Cf computed. The two predicted skin-
friction distributions shown in the upper portion of figure 10 result from two
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turbulence models used for this calculation. The equilibrium model is that
described above while the exponential lag model is that suggested by Rose and' ^
Johnson (ref. 22) and subsequently used with some success in the Navier-Stokes *
calculations of reference 23 (see also ref., 18). One may conclude then that,*'""
given the appropriate turbulence model, the boundary-layer equations are ade-^ '
quate to describe flows of this type.

The last case considered was also taken from references 20 and 21. The
initial flow properties were the same as those discussed in figure 10 but the
shock generator angle was set at 13° to the oncoming flow. As shown in the
upper.portion of figure 11, the flow has an extensive region of separation
(x - x ) ~ 46. For this case, the inverse boundary-layer method
reatt sep ' . ' J -

failed. The predicted pressure distribution shown in figure 11 indicated . -
nearly twice the pressure rise observed experimentally. Direct solutions
employing the experimentally observed pressure distribution failed to predict •• *
any separation. This might be attributed to three-dimensional effects in the
experiment except that the Navier-Stokes solutions of Baldwin and Rose (see
ref. 18), using a similar turbulence'1 model, did a plausible job of predicting
the flow. An examination of this solution shows extensive regions of signif-
icant normal pressure gradient.

Coupled Solutions . : ;

Figure 12 compares the pressure distributions resulting from the two ';
coupling schemes for the Hakkinen 6b case with that given by the Navier^ • ., -••...7
Stokes program of reference 3. Neither coupling scheme appears to~be ade- - /
quate when applied in a noniterative manner. The tendency of shock-capturing .
techniques to smear the shock wave over several grid points and to overshoot
the pressure rise through the shock-wave reflection is evident. Perhaps the -
best overall qualitative agreement with the Navier-Stokes results is provided .
by the u-v coupling scheme; however, as noted earlier, the discontinuity in.'.-
v that results from the boundary-layer calculations will strongly affect this
scheme. ' ••• ' , .

Truncated Navier-Stokes Equations • -

To circumvent the difficulties encountered in coupling viscous and
inviscid flows, an alternative procedure was considered. Rather than solve
coupled viscous and inviscid equations in an iterative mode, we proposed to
solve the following system of equations:

• ... 3p 3pu 3pv _—t- + —£-— + —&— = 0 • ; • • . s.
•• 3t 3x 3y . ..

3pu , 3u . 3u . 3p
-^— + pu — + pv -r— + -T*- -
3t H 3x p 3y 3x

8pV I pu 3v I Mv
 8v I 8p ~ 0
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together with an equation of state and a consistent energy conservation rela-
tion. This was accomplished by simply removing the appropriate terms from the
computer code of MacCormack and Baldwin (ref. 11). These equations converged
everywhere within 1 percent pf full Navier-Stokes solution for the Hakkinen
cases 6a and 6b using the same mesh configuration (results not shown). The
above method was slightly more efficient than the solution of the full Navier-
Stokes equations because fewer operations need to be performed in the computer
code. . ' . ' .

One can deduce, however, that these equations can be solved and since
they are parabolic in the streamwise variable, they can be solved by a forward-
marching procedure. This latter fact would allow a first-order improvement in
computational efficiency. Unfortunately, these conclusions were reached very
late in the present study and time did not permit significant exploitation of,
the properties of these equations.

CONCLUDING REMARKS

We have demonstrated the validity of the boundary-layer equations applied
to certain shock-wave, boundary-layer interactions. As has been suggested
(e.g., ref. 2), solutions to the boundary-layer equations begin to depart sig-
nificantly from those of the Navier-Stokes equations under the same conditions
for which nontrivial normal pressure gradients are first observed in the
Navier-Stokes solutions. Based on the physical argument that high-velocity
flow, turning through a large angle, requires the action of a large force over
a short distance, one may deduce that the normal pressure gradient arises pri-
marily from the inviscid characteristics of the flow field. From this one may
conclude that when some parameter involving both Mach number and turning angle,
for example, Me|ve/u |, exceeds a critical value, boundary-layer theory will
fall. • ' . ' . ' . _ .

Despite the fact that boundary-layer theory can be shown to fail at high
supersonic Mach numbers when extensive separations occur, it would appear
that, for many technological problems, boundary-layer theory is quite satis-
factory. This should be particularly true in the design of transonic airfoils
and for engine inlets to be used on transonic and low supersonic flight
vehicles when high angle-of-attack trajectories are not required.

Note that a typical solution presented here required about 3 min of CPU
time on the IBM 360/67. Our experience indicates a factor of about 25 reduc-
tion in CPU time when the CDC 7600 is used. While the present inverse method
is not yet a complete predictive method, it shows substantial promise if the
coupling problems can be solved. Alternatively, if these problems defy solu-
tion, the truncated Navier-Stokes system described earlier appears to be
potentially useful.
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Figure 1.- Comparison of envelope of f our, Navier-Stokes solutions with the
data of Hakkinen et aT.; M - 2t Reshock 2.84xl05, p,/p = 1.20.f o
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Figure 2.- Comparison of envelope of four Navier-Stokes solutions with the
data of Hakkinen. et al.; M » 2, Re = 2.96xiQ5, p /p = 1.40.

170



O DATA OF HAKKINEN ET AL

PRESENT METHOD

MacCORMACK NS SOIK
REflNEO MESH

"SHOCK

Figure 3.- Comparison of results of the present method with refined mesh cal-
culations using Hung and. MacCormack's code'. ''
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Figure 4.- Comparison of predicted velocity profiles at minimum
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Figure 5.- Predicted pressure distributions for an unseparated laminar
boundary-layer, shock-wave interaction; calculations of MacCormack.
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Figure 6.- Comparison of results of present method with calculations of
MacCormack.
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Figure 8.- .Predicted pressure .distributions for.a separated laminar .boundary-
layer, shock-wave interaction; calculations of MacCormack.
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Figure 9.- Comparison of the results of the present method with the data of
Seddon (ref. 18).
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Figure 10.- Comparison of the present method with the data of reference 19;
= turbulent unseparated flow.
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Figure 11.- Comparison of the present method with the data of reference 20;
turbulent separated flow.
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Figure 12.- Comparison of coupling schemes.
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