49 research outputs found

    Molecular genetics of nicotine dependence and abstinence: whole genome association using 520,000 SNPs

    Get PDF
    BACKGROUND: Classical genetic studies indicate that nicotine dependence is a substantially heritable complex disorder. Genetic vulnerabilities to nicotine dependence largely overlap with genetic vulnerabilities to dependence on other addictive substances. Successful abstinence from nicotine displays substantial heritable components as well. Some of the heritability for the ability to quit smoking appears to overlap with the genetics of nicotine dependence and some does not. We now report genome wide association studies of nicotine dependent individuals who were successful in abstaining from cigarette smoking, nicotine dependent individuals who were not successful in abstaining and ethnically-matched control subjects free from substantial lifetime use of any addictive substance. RESULTS: These data, and their comparison with data that we have previously obtained from comparisons of four other substance dependent vs control samples support two main ideas: 1) Single nucleotide polymorphisms (SNPs) whose allele frequencies distinguish nicotine-dependent from control individuals identify a set of genes that overlaps significantly with the set of genes that contain markers whose allelic frequencies distinguish the four other substance dependent vs control groups (p < 0.018). 2) SNPs whose allelic frequencies distinguish successful vs unsuccessful abstainers cluster in small genomic regions in ways that are highly unlikely to be due to chance (Monte Carlo p < 0.00001). CONCLUSION: These clustered SNPs nominate candidate genes for successful abstinence from smoking that are implicated in interesting functions: cell adhesion, enzymes, transcriptional regulators, neurotransmitters and receptors and regulation of DNA, RNA and proteins. As these observations are replicated, they will provide an increasingly-strong basis for understanding mechanisms of successful abstinence, for identifying individuals more or less likely to succeed in smoking cessation efforts and for tailoring therapies so that genotypes can help match smokers with the treatments that are most likely to benefit them

    Erratum to: Personalized Smoking Cessation: Interactions between Nicotine Dose, Dependence and Quit-Success Genotype Score

    No full text

    Brain nicotinic acetylcholine receptor availability and response to smoking cessation treatment: a randomized trial.

    No full text
    ImportanceCigarette smoking leads to upregulation of nicotinic acetylcholine receptors (nAChRs) in the human brain, including the common α4β2* nAChR subtype. While subjective aspects of tobacco dependence have been extensively examined as predictors of quitting smoking with treatment, no studies to our knowledge have yet reported the relationship between the extent of pretreatment upregulation of nAChRs and smoking cessation.ObjectiveTo determine whether the degree of nAChR upregulation in smokers predicts quitting with a standard course of treatment.Design, setting, and participantsEighty-one tobacco-dependent cigarette smokers (volunteer sample) underwent positron emission tomographic (PET) scanning of the brain with the radiotracer 2-FA followed by 10 weeks of double-blind, placebo-controlled treatment with nicotine patch (random assignment). Pretreatment specific binding volume of distribution (VS/fP) on PET images (a value that is proportional to α4β2* nAChR availability) was determined for 8 brain regions of interest, and participant-reported ratings of nicotine dependence, craving, and self-efficacy were collected. Relationships between these pretreatment measures, treatment type, and outcome were then determined. The study took place at academic PET and clinical research centers.Main outcomes and measuresPosttreatment quit status after treatment, defined as a participant report of 7 or more days of continuous abstinence and an exhaled carbon monoxide level of 3 ppm or less.ResultsSmokers with lower pretreatment VS/fP values (a potential marker of less severe nAChR upregulation) across all brain regions studied were more likely to quit smoking (multivariate analysis of covariance, F8,69 = 4.5; P &lt; .001), regardless of treatment group assignment. Furthermore, pretreatment average VS/fP values provided additional predictive power for likelihood of quitting beyond the self-report measures (stepwise binary logistic regression, likelihood ratio χ21 = 19.8; P &lt; .001).Conclusions and relevanceSmokers with less upregulation of available α4β2* nAChRs have a greater likelihood of quitting with treatment than smokers with more upregulation. In addition, the biological marker studied here provided additional predictive power beyond subjectively rated measures known to be associated with smoking cessation outcome. While the costly, time-consuming PET procedure used here is not likely to be used clinically, simpler methods for examining α4β2* nAChR upregulation could be tested and applied in the future to help determine which smokers need more intensive and/or lengthier treatment.Trial registrationclinicaltrials.gov Identifier: NCT01526005
    corecore