65 research outputs found

    Diabetic ketoacidosis

    Get PDF
    Diabetic ketoacidosis (DKA) is the most common acute hyperglycaemic emergency in people with diabetes mellitus. A diagnosis of DKA is confirmed when all of the three criteria are present — ‘D’, either elevated blood glucose levels or a family history of diabetes mellitus; ‘K’, the presence of high urinary or blood ketoacids; and ‘A’, a high anion gap metabolic acidosis. Early diagnosis and management are paramount to improve patient outcomes. The mainstays of treatment include restoration of circulating volume, insulin therapy, electrolyte replacement and treatment of any underlying precipitating event. Without optimal treatment, DKA remains a condition with appreciable, although largely preventable, morbidity and mortality. In this Primer, we discuss the epidemiology, pathogenesis, risk factors and diagnosis of DKA and provide practical recommendations for the management of DKA in adults and children

    A general theory of non-abelian electrodynamics

    No full text
    The general theory of gauge fields is used to develop a theory of electrodynamics in which the fundamental structure is non-Abelian and in which the internal gauge field symmetry is O(3), based on the existence of circular polarization and the third Stokes parameter. The theory is used to provide an explanation for the Sagnac effect with platform at rest and in motion. The Sagnac formula is obtained by considering the platform in motion to be a gauge transformation. The topological phases can be described straightforwardly with non Abelian electrodynamics, which produces a novel magnetic field component for all types of radiation, a component which is proportional to the third Stokes parameter. The theory provides a natural explanation for the inverse Faraday effect without phenomenology

    Inconsistencies of the U(1) theory of electrodynamics: Stress energy momentum tensor

    No full text
    The internal gauge space of electrodynamics considered as a U(1) gauge field theory is a scalar. This leads to the result that in free space, and for plane waves, the Poynting vector and energy vanish. This result is consistent with the fact that U(1) gauge field theory results in a null third Stokes parameter, meaning again that the field energy vanishes in free space. A self consistent definition of the stress energy momentum tensor is obtained with a Yang Mills theory applied with an O(3) symmetry internal gauge space. This theory produces the third Stokes parameter self consistently in terms of the self-dual Evans-Vigier fields B(3)
    corecore