9 research outputs found

    Alveolar macrophages regulate neutrophil recruitment in endotoxin-induced lung injury

    Get PDF
    BACKGROUND: Alveolar macrophages play an important role during the development of acute inflammatory lung injury. In the present study, in vivo alveolar macrophage depletion was performed by intratracheal application of dichloromethylene diphosphonate-liposomes in order to study the role of these effector cells in the early endotoxin-induced lung injury. METHODS: Lipopolysaccharide was applied intratracheally and the inflammatory reaction was assessed 4 hours later. Neutrophil accumulation and expression of inflammatory mediators were determined. To further analyze in vivo observations, in vitro experiments with alveolar epithelial cells and alveolar macrophages were performed. RESULTS: A 320% increase of polymorphonuclear leukocytes in bronchoalveolar lavage fluid was observed in macrophage-depleted compared to macrophage-competent lipopolysaccharide-animals. This neutrophil recruitment was also confirmed in the interstitial space. Monocyte chemoattractant protein-1 concentration in bronchoalveolar lavage fluid was significantly increased in the absence of alveolar macrophages. This phenomenon was underlined by in vitro experiments with alveolar epithelial cells and alveolar macrophages. Neutralizing monocyte chemoattractant protein-1 in the airways diminished neutrophil accumulation. CONCLUSION: These data suggest that alveolar macorphages play an important role in early endotoxin-induced lung injury. They prevent neutrophil influx by controlling monocyte chemoattractant protein-1 production through alveolar epithelial cells. Alveolar macrophages might therefore possess robust anti-inflammatory effects

    Cytotoxic targeting of F9 teratocarcinoma tumours with anti-ED-B fibronectin scFv antibody modified liposomes

    Get PDF
    We prepared small unilamellar liposomes derivatised with single chain antibody fragments specific for the ED-B domain of B-fibronectin. This extracellular matrix associated protein is expressed around newly forming blood vessels in the vicinity of many types of tumours. The single chain antibody fragments were functionalised by introduction of C-terminal cysteines and linked to liposomes via maleimide groups located at the terminal ends of poly(ethylene glycol) modified phospholipids. The properties of these anti-ED-B single chain antibody fragments-liposomes were analysed in vitro on ED-B fibronectin expressing Caco-2 cells and in vivo by studying their biodistribution and their therapeutic potential in mice bearing subcutanous F9 teratocarcinoma tumours. Radioactively labelled (114mIndium) single chain antibody fragments-liposomes accumulated in the tumours at 2–3-fold higher concentrations during the first 2 h after i.v. injection compared to unmodified liposomes. After 6–24 h both liposome types were found in similar amounts (8–10% injected dose g−1) in the tumours. Animals treated i.v. with single chain antibody fragments-liposomes containing the new cytotoxic agent 2′-deoxy-5-fluorouridylyl-N4-octadecyl-1-β-D-arabinofuranosylcytosine (30 mg kg-1 per dose, five times every 24 h) showed a reduction of tumour growth by 62–90% determined on days 5 and 8, respectively, compared to animals receiving control liposomes. Histological analysis revealed a marked reduction of F9 tumour cells and excessive deposition of fibronectin in the extracellular matrix after treatment with single chain antibody fragments-2-dioxy-5-fluorouridylyl-N4-octadecyl-1-β-D-arabinofuranosylcytosine-liposomes. Single chain antibody fragments-liposomes targeted to ED-B fibronectin positive tumours therefore represent a promising and versatile novel drug delivery system for the treatment of tumours

    Profound Depletion of HIV-1 Transcription in Patients Initiating Antiretroviral Therapy during Acute Infection

    Get PDF
    Early intervention resulted in profound depletion of PBMC expressing HIV-1 RNA. This is contrary to chronically infected patients who predominantly showed continuous UsRNA expression on cART. Thus, antiretroviral treatment initiated during the acute phase of infection prevented establishment or expansion of long-lived transcriptionally active viral cellular reservoirs in peripheral blood

    Liposomes in Biology and Medicine

    Full text link
    Drug delivery systems (DDS) have become important tools for the specific delivery of a large number of drug molecules. Since their discovery in the 1960s liposomes were recognized as models to study biological membranes and as versatile DDS of both hydrophilic and lipophilic molecules. Liposomes--nanosized unilamellar phospholipid bilayer vesicles--undoubtedly represent the most extensively studied and advanced drug delivery vehicles. After a long period of research and development efforts, liposome-formulated drugs have now entered the clinics to treat cancer and systemic or local fungal infections, mainly because they are biologically inert and biocompatible and practically do not cause unwanted toxic or antigenic reactions. A novel, up-coming and promising therapy approach for the treatment of solid tumors is the depletion of macrophages, particularly tumor associated macrophages with bisphosphonate-containing liposomes. In the advent of the use of genetic material as therapeutic molecules the development of delivery systems to target such novel drug molecules to cells or to target organs becomes increasingly important. Liposomes, in particular lipid-DNA complexes termed lipoplexes, compete successfully with viral gene transfection systems in this field of application. Future DDS will mostly be based on protein, peptide and DNA therapeutics and their next generation analogs and derivatives. Due to their versatility and vast body of known properties liposome-based formulations will continue to occupy a leading role among the large selection of emerging DDS

    Converting Tumor-specific Markers Into Reporters of Oncolytic Virus Infection

    No full text
    Preferential killing of transformed cells, while keeping normal cells and organs unharmed, is the main goal of cancer gene therapy. Genetically engineered trackable markers and imaging reporters enable noninvasive monitoring of transduction efficiency and pharmacokinetics of anticancer virotherapeutics. However, none of these reporters can differentiate between infection in the targeted tumors and that in the normal tissue. Thus, we constructed oncolytic measles virus (MV) armed with a human light immunoglobulin chain reporter gene for the treatment of multiple myeloma (MM). Excessive production of monoclonal immunoglobulin is a key characteristic and marker for diagnostics of MM. Once expressed in infected target cells, vector-encoded λ protein recombines with myeloma IgG-κ immunoglobulin creating a unique IgG-κ/λ. A modified immunoassay technique allows precise quantification of converted marker molecules. Only antibody producing cells were able to assemble this chimeric immunoglobulin molecule, whereas other cells secreted only free λ light chain. Human myeloma xenografts inoculated with λ chain expressing MV secreted converted IgG-κ/λ in the plasma of tumor bearing animals and elevated reporter levels correlated with response to the therapy. This is the first report of a gene therapy vector engineered to discriminate between infection in malignant and normal cells by molecular modification of a tumor-specific protein

    CCL5-CCR5 interaction provides antiapoptotic signals for macrophage survival during viral infection

    No full text
    Host defense against viruses probably depends on targeted death of infected host cells and then clearance of cellular corpses by macrophages. For this process to be effective, the macrophage must presumably avoid its own virus-induced death. Here we identify one such mechanism. We show that mice lacking the chemokine Ccl5 are immune compromised to the point of delayed viral clearance, excessive airway inflammation and respiratory death after mouse parainfluenza or human influenza virus infection. Virus-inducible levels of Ccl5 are required to prevent apoptosis of virus-infected mouse macrophages in vivo and mouse and human macrophages ex vivo. The protective effect of Ccl5 requires activation of the Ccr5 chemokine receptor and consequent bilateral activation of G(alphai)-PI3K-AKT and G(alphai)-MEK-ERK signaling pathways. The antiapoptotic action of chemokine signaling may therefore allow scavengers to finally stop the host cell-to-cell infectious process

    MIF is a noncognate ligand of CXC chemokine receptors in inflammatory and atherogenic cell recruitment

    No full text
    © 2007 Nature Publishing GroupThe cytokine macrophage migration inhibitory factor (MIF) plays a critical role in inflammatory diseases and atherogenesis. We identify the chemokine receptors CXCR2 and CXCR4 as functional receptors for MIF. MIF triggered G(alphai)- and integrin-dependent arrest and chemotaxis of monocytes and T cells, rapid integrin activation and calcium influx through CXCR2 or CXCR4. MIF competed with cognate ligands for CXCR4 and CXCR2 binding, and directly bound to CXCR2. CXCR2 and CD74 formed a receptor complex, and monocyte arrest elicited by MIF in inflamed or atherosclerotic arteries involved both CXCR2 and CD74. In vivo, Mif deficiency impaired monocyte adhesion to the arterial wall in atherosclerosis-prone mice, and MIF-induced leukocyte recruitment required Il8rb (which encodes Cxcr2). Blockade of Mif but not of canonical ligands of Cxcr2 or Cxcr4 in mice with advanced atherosclerosis led to plaque regression and reduced monocyte and T-cell content in plaques. By activating both CXCR2 and CXCR4, MIF displays chemokine-like functions and acts as a major regulator of inflammatory cell recruitment and atherogenesis. Targeting MIF in individuals with manifest atherosclerosis can potentially be used to treat this condition.Jürgen Bernhagen, Regina Krohn, Hongqi Lue, Julia L Gregory, Alma Zernecke, Rory R Koenen, Manfred Dewor, Ivan Georgiev, Andreas Schober, Lin Leng, Teake Kooistra, Günter Fingerle-Rowson, Pietro Ghezzi, Robert Kleemann, Shaun R McColl, Richard Bucala, Michael J Hickey & Christian Webe
    corecore