375 research outputs found

    Le Turbe psichiche nella sclerosi multipla: un prodotto della inadeguatezza della risposta sociale e sanitaria ai bisogni dei malati

    Get PDF
    Questa relazione si propone di richiamare l'attenzione su alcuni aspetti medico-sociali di un gruppo fra i più deboli e indifesi all'interno della società: quello degli individui affetti da sclerosi multipla

    On the simulation of the seismic energy transmission mechanisms

    Full text link
    In recent years, considerable attention has been paid to research and development methods able to assess the seismic energy propagation on the territory. The seismic energy propagation is strongly related to the complexity of the source and it is affected by the attenuation and the scattering effects along the path. Thus, the effect of the earthquake is the result of a complex interaction between the signal emitted by the source and the propagation effects. The purpose of this work is to develop a methodology able to reproduce the propagation law of seismic energy, hypothesizing the "transmission" mechanisms that preside over the distribution of seismic effects on the territory, by means of a structural optimization process with a predetermined energy distribution. Briefly, the approach, based on a deterministic physical model, determines an objective correction of the detected distributions of seismic intensity on the soil, forcing the compatibility of the observed data with the physical-mechanical model. It is based on two hypotheses: (1) the earthquake at the epicentre is simulated by means of a system of distortions split into three parameters; (2) the intensity is considered coincident to the density of elastic energy. The optimal distribution of the beams stiffness is achieved, by reducing the difference between the values of intensity distribution computed on the mesh and those observed during four regional events historically reported concerning the Campania region (Italy)

    Cutaneous Force Feedback as a Sensory Subtraction Technique in Haptics

    Full text link
    A novel sensory substitution technique is presented. Kinesthetic and cutaneous force feedback are substituted by cutaneous feedback (CF) only, provided by two wearable devices able to apply forces to the index finger and the thumb, while holding a handle during a teleoperation task. The force pattern, fed back to the user while using the cutaneous devices, is similar, in terms of intensity and area of application, to the cutaneous force pattern applied to the finger pad while interacting with a haptic device providing both cutaneous and kinesthetic force feedback. The pattern generated using the cutaneous devices can be thought as a subtraction between the complete haptic feedback (HF) and the kinesthetic part of it. For this reason, we refer to this approach as sensory subtraction instead of sensory substitution. A needle insertion scenario is considered to validate the approach. The haptic device is connected to a virtual environment simulating a needle insertion task. Experiments show that the perception of inserting a needle using the cutaneous-only force feedback is nearly indistinguishable from the one felt by the user while using both cutaneous and kinesthetic feedback. As most of the sensory substitution approaches, the proposed sensory subtraction technique also has the advantage of not suffering from stability issues of teleoperation systems due, for instance, to communication delays. Moreover, experiments show that the sensory subtraction technique outperforms sensory substitution with more conventional visual feedback (VF)

    Effect of visual distraction and auditory feedback on patient effort during robot-assisted movement training after stroke

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Practicing arm and gait movements with robotic assistance after neurologic injury can help patients improve their movement ability, but patients sometimes reduce their effort during training in response to the assistance. Reduced effort has been hypothesized to diminish clinical outcomes of robotic training. To better understand patient slacking, we studied the role of visual distraction and auditory feedback in modulating patient effort during a common robot-assisted tracking task.</p> <p>Methods</p> <p>Fourteen participants with chronic left hemiparesis from stroke, five control participants with chronic right hemiparesis and fourteen non-impaired healthy control participants, tracked a visual target with their arms while receiving adaptive assistance from a robotic arm exoskeleton. We compared four practice conditions: the baseline tracking task alone; tracking while also performing a visual distracter task; tracking with the visual distracter and sound feedback; and tracking with sound feedback. For the distracter task, symbols were randomly displayed in the corners of the computer screen, and the participants were instructed to click a mouse button when a target symbol appeared. The sound feedback consisted of a repeating beep, with the frequency of repetition made to increase with increasing tracking error.</p> <p>Results</p> <p>Participants with stroke halved their effort and doubled their tracking error when performing the visual distracter task with their left hemiparetic arm. With sound feedback, however, these participants increased their effort and decreased their tracking error close to their baseline levels, while also performing the distracter task successfully. These effects were significantly smaller for the participants who used their non-paretic arm and for the participants without stroke.</p> <p>Conclusions</p> <p>Visual distraction decreased participants effort during a standard robot-assisted movement training task. This effect was greater for the hemiparetic arm, suggesting that the increased demands associated with controlling an affected arm make the motor system more prone to slack when distracted. Providing an alternate sensory channel for feedback, i.e., auditory feedback of tracking error, enabled the participants to simultaneously perform the tracking task and distracter task effectively. Thus, incorporating real-time auditory feedback of performance errors might improve clinical outcomes of robotic therapy systems.</p

    Analytical solution of elastic fields induced by a 2D inclusion of arbitrary polygonal shape

    Get PDF
    Abstract We generalize a recent application of the equivalent inclusion method, Jin et al. (2011), to derive the elastic field induced by a constant eigenstrain applied to an elliptic inclusion whose boundary is approximated by a polygon, the number of sides being assigned so as to recover the analytical values of the entries of the Eshelby tensor. The generalization consists in the fact that displacements, strains, stresses and the Eshelby tensor can be given a unique expression, holding inside and outside the inclusion, thus avoiding the recourse to the derivation of distinct expressions, based upon different approaches, for the elastic fields. The proposed approach has been successfully applied to evaluate the elastic fields induced by an elliptical cavity in a linear isotropic infinite plate subjected to a remote loading by recovering the classical solutions by Inglis (1913) and Maugis (1992). Furthermore it can easily be applied to elliptical holes arbitrarily oriented with respect to the loading direction

    inkjet sensors produced by consumer printers with smartphone impedance readout

    Get PDF
    Abstract Inkjet printing technology is showing a disruptive potential for low-cost optical and electrochemical biosensors fabrication. This technology is becoming affordable for every laboratory, potentially allowing every research group to implement a biosensors fabrication platform with consumer inkjet printers, commercially available inks and smartphones for readout. In the present work we developed an example of such platform testing several inks, printers, and substrates. We defined and optimized the protocols assessing the printing limits and the fabricated biosensors electrochemical properties in standard solutions. Our platform has a total cost of less than 450 Euro and a single sensor fabrication cost of 0.026 Euro. Finally, we tested the sensitivity of smartphone-performed impedance measurements with printed biosensors surface coverage by Self Assembling Monolayers (SAM), validating them with standard instruments

    Probing LLMs for Joint Encoding of Linguistic Categories

    Full text link
    Large Language Models (LLMs) exhibit impressive performance on a range of NLP tasks, due to the general-purpose linguistic knowledge acquired during pretraining. Existing model interpretability research (Tenney et al., 2019) suggests that a linguistic hierarchy emerges in the LLM layers, with lower layers better suited to solving syntactic tasks and higher layers employed for semantic processing. Yet, little is known about how encodings of different linguistic phenomena interact within the models and to what extent processing of linguistically-related categories relies on the same, shared model representations. In this paper, we propose a framework for testing the joint encoding of linguistic categories in LLMs. Focusing on syntax, we find evidence of joint encoding both at the same (related part-of-speech (POS) classes) and different (POS classes and related syntactic dependency relations) levels of linguistic hierarchy. Our cross-lingual experiments show that the same patterns hold across languages in multilingual LLMs.Comment: Accepted in EMNLP Findings 202

    Immunomodulation of fucosyl-lactose and lacto-N-fucopentaose on mononuclear cells from multiple sclerosis and healthy subjects

    Get PDF
    The 1,2-fucosyl-oligosaccharides, and among these the 2’-fucosyl-lactose (2’-FL) and lacto-N-fucopentaose (LNFP)-I, are quantitatively the most represented oligosaccharides of human milk. They are also seen to represent an important immune device to prevent nursing infants from severe infectious diarrhoea. Recent evidences show that the appearance of 2’-FL and LNFP-I in human colostrums is synchronised with the macrophage inhibition and that LNFP-III induces a Th2 response from the mouse peripheral immune system. Since mannosyl-fucosyl receptors are described on the macrophage surface, all these evidences allow us to investigate on the possible immune function of human 2’-FL and LNFP-I in vitro on LPS-activated mononuclear cells (MNC) from 12 patients with multiple sclerosis (MS) and 20 matched health controls (HC). We found that 2’-FL and LNFP-I significantly decrease, to a different extent, the MNC proliferation from both HC and MS patients, in a linear and dose-dependent manner. 2’-FL and LNFPI also reduce the production of IL-12 and IFN-γ, particularly in MS patients as compared to HC (p=0.01 and p&lt;0.001, respectively), while increasing that of IL- 10. The overall immunomodulatory effect of 2’-FL and LNFP I here presented may represent a future therapeutic option for the abnormal immune response found in some monocyte-mediated diseases

    Morphology, ultrastructure, and molecular phylogeny of the ciliate Sonderia vorax with insights into the systematics of order Plagiopylida

    Get PDF
    BACKGROUND: Ciliates of the family Sonderiidae are common members of the eukaryotic communities in various anoxic environments. They host both ecto- and endosymbiotic prokaryotes (the latter associated with hydrogenosomes) and possess peculiar morpho-ultrastructural features, whose functions and homologies are not known. Their phylogenetic relationships with other ciliates are not completely resolved and the available literature, especially concerning electron microscopy and molecular studies, is quite scarce. RESULTS: Sonderia vorax Kahl, 1928 is redescribed from an oxygen-deficient, brackish-water pond along the Ligurian Sea coastlines of Italy. Data on morphology, morphometry, and ultrastructure are reported. S. vorax is ovoid-ellipsoid in shape, dorsoventrally flattened, 130 x 69 μm (mean in vivo); it shows an almost spherical macronucleus, and one relatively large micronucleus. The ventral kinetom has a “secant system” including fronto-ventral and fronto-lateral kineties. A distinctive layer of bacteria laying between kineties covers the ciliate surface. Two types of extrusomes and hydrogenosomes-endosymbiotic bacteria assemblages are present in the cytoplasm. The phylogeny based on 18S rRNA gene sequences places S. vorax among Plagiopylida; Sonderiidae clusters with Plagiopylidae, although lower-level relationships remain uncertain. The studied population is fixed as neotype and the ciliate is established as type species of the genus, currently lacking. CONCLUSIONS: This is the first description of a representative of Sonderiidae performed with both morphological and molecular data. To sum up, many previous hypotheses on this interesting, poorly known taxon are confirmed but confusion and contradictory data are as well highlighted

    Coexistence of Tubulins and ftsZ in Different Prosthecobacter Species

    Get PDF
    Prosthecobacter, one of the few cultivable representatives of the bacterial phylum Verrucomicrobia, is of increasing interest to the scientific community due to the presence of tubulin genes in its genome and the apparent absence of the bacterial homologue FtsZ that is normally involved in prokaryotic cell division. These findings suggested the possibility of a vicarious takeover of the FtsZ function through these novel tubulins and opened new scenarios on the possible evolution of bacterial cytoskeleton and cell division. In the present manuscript, we report the characterization of ftsZ and ftsA homologues in different Prosthecobacter species that also possess tubulin genes. Based on these findings, we propose an FtsZ-based cell division mechanism in Verrucomicrobia. The analysis of available genome data of Verrucomicrobia suggests that tubulins are not a feature common to all members of this phylum. Therefore, it can be assumed that Prosthecobacter acquired tubulins through horizontal gene transfer. The functional role of tubulins in Prosthecobacter remains enigmatic
    corecore