122 research outputs found

    Bioseparation of Four Proteins from Euphorbia characias Latex: Amine Oxidase, Peroxidase, Nucleotide Pyrophosphatase/Phosphodiesterase, and Purple Acid Phosphatase

    Get PDF
    This paper deals with the purification of four proteins from Euphorbia characias latex, a copper amine oxidase, a nucleotide pyrophosphatase/phosphodiesterase, a peroxidase, and a purple acid phosphatase. These proteins, very different in molecular weight, in primary structure, and in the catalyzed reaction, are purified using identical preliminary steps of purification and by chromatographic methods. In particular, the DEAE-cellulose chromatography is used as a useful purification step for all the four enzymes. The purification methods here reported allow to obtain a high purification of all the four proteins with a good yield. This paper will give some thorough suggestions for researchers busy in separation of macromolecules from different sources

    Oxidation of Spermine by an Amine Oxidase from Lentil Seedlings

    Full text link

    Superoxide Dismutase from Lens esculenta

    Full text link

    Euphorbia characias: Phytochemistry and Biological Activities

    Get PDF
    The aim of this review is to summarize all the compounds identified and characterized from Euphorbia characias, along with the biological activities reported for this plant. Euphorbia is one of the greatest genera in the spurge family of Euphorbiaceae and includes different kinds of plants characterized by the presence of milky latex. Among them, the species Euphorbia characias L. is an evergreen perennial shrub widely distributed in Mediterranean countries. E. characias latex and extracts from different parts of the plant have been extensively studied, leading to the identification of several chemical components such as terpenoids, sterol hydrocarbons, saturated and unsaturated fatty acids, cerebrosides and phenolic and carboxylic acids. The biological properties range between antioxidant activities, antimicrobial, antiviral and pesticidal activities, wound-healing properties, anti-aging and hypoglycemic properties and inhibitory activities toward target enzymes related to different diseases, such as cholinesterases and xanthine oxidase. The information available in this review allows us to consider the plant E. characias as a potential source of compounds for biomedical research

    Interaction of plant amine oxidases with diaminoethers

    Get PDF
    Polyamines are ubiquitous compounds, which are involved in crucial physiological events including cell growth and differentiation. The catabolic oxidative degradation of polyamines is catalyzed by quinoprotein copper-containing amine oxidases (CAOs) and flavoprotein polyamine oxidases (PAOs). Various synthetic polyamine analogs and polyamine derivatives have been reported, which represent important tools (substrates or inhibitors) in the study of catalytic properties of the enzymes. In this work, two related compounds were studied in the reactions with plant amine oxidases: 1,8-diamino-3,6-dioxaoctane (DADO) and 1,10-bis(2- pyridinylmethyl)-4,7-dioxa-1,10-diazadecane (BPDD). Based on activity and stoichiometry assays together with spectrophotometric measurements, DADO can be considered a good substrate for grass pea, lentil and E. characias CAOs with Km values in the range 10-4 – 10-3 M. Its oxidative degradation produces the corresponding aminoaldehyde 8-amino-3,6-dioxaoctanal, which does not undergo spontaneous cyclization (as it is known for the oxidation products of natural substrates putrescine, cadaverine and spermidine) or polymerization in the reaction mixture. Conversely, oat PAO does not oxidize DADO and is only weakly inhibited by the compound (Ki = 1.6 mM towards putrescine). BPDD was found to be a competitive inhibitor of both CAOs and PAOs with Ki values of 10-4 M. DADO could be suggested as a potential affinity ligand for CAOs

    Antibacterial activity and molecular docking studies of a selected series of Hydroxy-3-arylcoumarins

    Get PDF
    Antibiotic resistance is one of the main public health concerns of this century. This resistance is also associated with oxidative stress, which could contribute to the selection of resistant bacterial strains. Bearing this in mind, and considering that flavonoid compounds are well known for displaying both activities, we investigated a series of hydroxy-3-arylcoumarins with structural features of flavonoids for their antibacterial activity against different bacterial strains. Active compounds showed selectivity against the studied Gram-positive bacteria compared to Gram-negative bacteria. 5,7-Dihydroxy-3-phenylcoumarin (compound 8) displayed the best antibacterial activity against Staphylococcus aureus and Bacillus cereus with minimum inhibitory concentrations (MICs) of 11 µg/mL, followed by Staphylococcus aureus (MRSA strain) and Listeria monocytogenes with MICs of 22 and 44 µg/mL, respectively. Moreover, molecular docking studies performed on the most active compounds against Staphylococcus aureus tyrosyl-tRNA synthetase and topoisomerase II DNA gyrase revealed the potential binding mode of the ligands to the site of the appropriate targets. Preliminary structure–activity relationship studies showed that the antibacterial activity can be modulated by the presence of the 3-phenyl ring and by the position of the hydroxyl groups at the coumarin scaffoldThis work was partially supported by a grant from the University of Cagliari (FIR) and by Galician Plan of Research, Innovation and Growth 2011–2015 (Xunta da Galicia Plan I2C, ED481B 2014/086–0 and ED481B 2018/007S

    Interest of 3-arylcoumarins as xanthine oxidase inhibitors

    Get PDF
    The 19th International Electronic Conference on Synthetic Organic Chemistry session Bioorganic, Medicinal and Natural Products ChemistryIn the current paper we studied the interest of a series of 3-arylcoumarin derivatives as xanthine oxidase inhibitors. For the best compound of the series, the 4’-methoxyphenyl-6-nitrocoumarin, it was determined the IC50 value and the type of inhibition. This work is a preliminary screening for further design and synthetize new non-purinergic derivatives as potential compounds involved in the inflammatory suppression, specially related to the gou

    Superoxide Dismutase from Lens esculenta: Purification and Properties

    No full text
    Superoxide dismutase has been purified to homogeneity from Lens esculenta cotyledons and shoots. The two forms appeared to be identical. The purified enzyme contained two electrophoretically distinct bands. It contained two ions of Cu and two ions of Zn. Gel filtration experiments indicate a molecular weight of about 33,000. The spectrum of ultraviolet and visible regions and electron paramagnetic resonance were similar to those of Cu-Zn mammalian superoxide dismutase

    PLANT COPPER-AMINE OXIDASES

    No full text
    In this review, the widely distributed plant copper-amine oxidases are described. The purification procedures, molecular features, substrate specificities, inhibitors, the stoichiometry of the catalysed reaction, spectroscopic features, the prosthetic groups and reaction mechanisms, are all reviewed
    corecore