19 research outputs found

    Interaction of two modulational instabilities in a semiconductor resonator

    Get PDF
    The interaction of two neighboring modulational instabilities in a coherently driven semiconductor cavity is investigated. First, an asymptotic reduction of the general equations is performed in the limit of a nearly vertical input-output characteristic. Next, a normal form is derived in the limit where the two instabilities are close to one other. An infinity of branches of periodic solutions are found to emerge from the unstable portion of the homogeneous branch. These branches have a nontrivial envelope in the bifurcation diagram that can either smoothly join the two instability points or form an isolated branch of solutions

    Spatial Solitons and Anderson Localization

    Full text link
    Stochastic (Anderson) localization is the spatial localization of the wave-function of quantum particles in random media. We show, that a corresponding phenomenon can stabilize spatial solitons in optical resonators: spatial solitons in resonators with randomly distorted mirrors are more stable than in perfect mirror resonators. We demonstrate the phenomenon numerically, by investigating solitons in lasers with saturable absorber, and analytically by deriving and analyzing coupled equations of spatially coherent and incoherent field components.Comment: submitted to Phys.Rev.

    Relativistic Laser-Matter Interaction and Relativistic Laboratory Astrophysics

    Full text link
    The paper is devoted to the prospects of using the laser radiation interaction with plasmas in the laboratory relativistic astrophysics context. We discuss the dimensionless parameters characterizing the processes in the laser and astrophysical plasmas and emphasize a similarity between the laser and astrophysical plasmas in the ultrarelativistic energy limit. In particular, we address basic mechanisms of the charged particle acceleration, the collisionless shock wave and magnetic reconnection and vortex dynamics properties relevant to the problem of ultrarelativistic particle acceleration.Comment: 58 pages, 19 figure

    Static and dynamic properties of cavity solitons in VCSELs with optical injection

    No full text
    The static and dynamical properties of cavity solitons in a vertical cavity surface emitting laser with optical injection are investigated. Analytical results about the instabilities affecting the homogeneous steady state are presented. These instabilities play a key role in the determination of the necessary and favorable conditions for cavity soliton existence. Optimization of an all-optical delay line by tuning the injected field frequency leads to a five fold increase of the soliton velocity in the transverse plane. Finally, the phenomenon of cavity soliton merging is applied to combine input signals in optical information processing and to manipulate two dimensional optical memories
    corecore