10 research outputs found

    Potential of Peroxisome Proliferator-Activated Receptor Gamma Antagonist Compounds as Therapeutic Agents for a Wide Range of Cancer Types

    Get PDF
    PPARγ is a therapeutic target that has been exploited for treatment of type II diabetes mellitus (T2DM) with agonist drugs. Since PPARγ is expressed by many hematopoietic, mesodermal and epithelial cancers, agonist drugs were tested and shown to have both preclinical and clinical anticancer activities. While preclinical activity has been observed in many cancer types, clinical activity has been observed only in pilot and phase II trials in liposarcoma and prostate cancer. Most studies address agonist compounds, with substantially fewer reports on anticancer effects of PPARγ antagonists. In cancer model systems, some effects of PPARγ agonists were not inhibited by PPARγ antagonists, suggesting noncanonical or PPARγ-independent mechanisms. In addition, PPARγ antagonists, such as T0070907 and GW9662, have exhibited antiproliferative effects on a broad range of hematopoietic and epithelial cell lines, usually with greater potency than agonists. Also, additive antiproliferative effects of combinations of agonist plus antagonist drugs were observed. Finally, there are preclinical in vivo data showing that antagonist compounds can be administered safely, with favorable metabolic effects as well as antitumor effects. Since PPARγ antagonists represent a new drug class that holds promise as a broadly applicable therapeutic approach for cancer treatment, it is the subject of this review

    Expression patterns of CEACAM5 and CEACAM6 in primary and metastatic cancers

    Get PDF
    BACKGROUND: Many breast, pancreatic, colonic and non-small-cell lung carcinoma lines express CEACAM6 (NCA-90) and CEACAM5 (carcinoembryonic antigen, CEA), and antibodies to both can affect tumor cell growth in vitro and in vivo. Here, we compare both antigens as a function of histological phenotype in breast, pancreatic, lung, ovarian, and prostatic cancers, including patient-matched normal, primary tumor, and metastatic breast and colonic cancer specimens. METHODS: Antigen expression was determined by immunohistochemistry (IHC) using tissue microarrays with MN-15 and MN-3 antibodies targeting the A1B1- and N-domains of CEACAM6, respectively, and the MN-14 antibody targeting the A3B3 domain of CEACAM5. IHC was performed using avidin-biotin-diaminobenzide staining. The average score ± SD (0 = negative/8 = highest) for each histotype was recorded. RESULTS: For all tumors, the amount of CEACAM6 expressed was greater than that of CEACAM5, and reflected tumor histotype. In breast tumors, CEACAM6 was highest in papillary > infiltrating ductal > lobular > phyllodes; in pancreatic tumors, moderately-differentiated > well-differentiated > poorly-differentiated tumors; mucinous ovarian adenocarcinomas had almost 3-fold more CEACAM6 than serous ovarian adenocarcinomas; lung adenocarcinomas > squamous tumors; and liver metastases of colonic carcinoma > primary tumors = lymph nodes metastases > normal intestine. However, CEACAM6 expression was similar in prostate cancer and normal tissues. The amount of CEACAM6 in metastatic colon tumors found in liver was higher than in many primary colon tumors. In contrast, CEACAM6 immunostaining of lymph node metastases from breast, colon, or lung tumors was similar to the primary tumor. CONCLUSION: CEACAM6 expression is elevated in many solid tumors, but variable as a function of histotype. Based on previous work demonstrating a role for CEACAM6 in tumor cell migration, invasion and adhesion, and formation of distant metastases (Blumenthal et al., Cancer Res 65: 8809–8817, 2005), it may be a promising target for antibody-based therapy

    B. Sprachwissenschaft.

    No full text
    corecore