5,865 research outputs found

    Magnetization plateaux and jumps in a frustrated four-leg spin tube under a magnetic field

    Get PDF
    We study the ground state phase diagram of a frustrated spin-1/2 four-leg spin tube in an external magnetic field. We explore the parameter space of this model in the regime of all-antiferromagnetic exchange couplings by means of three different approaches: analysis of low-energy effective Hamiltonian (LEH), a Hartree variational approach (HVA) and density matrix renormalization group (DMRG) for finite clusters. We find that in the limit of weakly interacting plaquettes, low-energy singlet, triplet and quintuplet states play an important role in the formation of fractional magnetization plateaux. We study the transition regions numerically and analytically, and find that they are described, at first order in a strong- coupling expansion, by an XXZ spin-1/2 chain in a magnetic field; the second-order terms give corrections to the XXZ model. All techniques provide consistent results which allow us to predict the existence of fractional plateaux in an important region in the space of parameters of the model.Comment: 10 pages, 7 figures. Accepted for publication in Physical Review

    Theory of weakly nonlinear self sustained detonations

    Full text link
    We propose a theory of weakly nonlinear multi-dimensional self sustained detonations based on asymptotic analysis of the reactive compressible Navier-Stokes equations. We show that these equations can be reduced to a model consisting of a forced, unsteady, small disturbance, transonic equation and a rate equation for the heat release. In one spatial dimension, the model simplifies to a forced Burgers equation. Through analysis, numerical calculations and comparison with the reactive Euler equations, the model is demonstrated to capture such essential dynamical characteristics of detonations as the steady-state structure, the linear stability spectrum, the period-doubling sequence of bifurcations and chaos in one-dimensional detonations and cellular structures in multi- dimensional detonations

    Electron Confinement Induced by Diluted Hydrogen-like Ad-atoms in Graphene Ribbons

    Get PDF
    We report the electronic properties of two-dimensional systems made of graphene nanoribbons which are patterned with ad-atoms in two separated regions. Due to the extra electronic confinement induced by the presence of the impurities, we find resonant levels, quasi-bound and impurity-induced localized states, which determine the transport properties of the system. Regardless of the ad-atom distribution in the system, we apply band-folding procedures to simple models and predict the energies and the spatial distribution of those impurity-induced states. We take into account two different scenarios: gapped graphene and the presence of randomly distributed ad-atoms in a low dilution regime. In both cases the defect-induced resonances are still detected. Our findings would encourage experimentalist to synthesize these systems and characterize their quasi-localized states employing, for instance, scanning tunneling spectroscopy (STS). Additionally, the resonant transport features could be used in electronic applications and molecular sensor devices.Comment: 12 pages, 11 figures, submitted (minor changes
    corecore