67 research outputs found

    Unravelling the optimization of few-layer graphene crystallinity and electrical conductivity in ceramic composites by Raman spectroscopy

    Get PDF
    Zirconia composites with few-layer graphene (FLG) were prepared by two powder processing routines -ultrasonic agitation or planetary ball milling- and spark plasma sintered at 1250 and 1300 °C. An in-depth study of the crystallinity of FLG, in terms of presence and nature of defects, was performed by Raman spectroscopy, revealing enhanced FLG crystallinity after sintering. This enhancement was more noticeable in the composites sintered at the highest temperature, with lower amount of structural defects and amorphous carbon. However, remaining amorphous carbon was detected in the composites prepared by planetary ball milling even after sintering at the highest temperature, resulting in lower electrical conductivities. Optimum results in terms of electrical conductivity were achieved for the composites prepared by ultrasonic agitation and sintered at 1300 °C, with electrical percolation limit below 2.5 vol% FLG and high electrical conductivity (678 S/m for 5 vol% FLG), as result of the enhanced FLG crystallinity after sintering.Ministerio de Ciencia, Innovación y Universidades PGC 2018- 101377-B-100Ministerio de Asuntos Económicos y Transformación Digital BES-2016- 078711Universidad de Sevilla USE-18740-

    Electrical conduction mechanisms in graphene nanoplatelet/yttria tetragonal zirconia composites

    Get PDF
    Yttria tetragonal zirconia polycrystalline (3YTZP) ceramic composites with 5, 10 and 20 vol% graphene nanoplatelets (GNPs) were prepared by spark plasma sintering (SPS) and their electrical conductivity as a function of temperature was characterized. The composites exhibit anisotropic microstructures so the electrical conductivity studies were carried out in two directions: perpendicular (σ⊥) and parallel (σ||) to the SPS pressing axis. The composites with 5 and 10 GNP vol% showed high electrical anisotropy, whereas the composite with 20 GNP vol % exhibited nearly isotropic electrical behavior. σ⊥ shows metallic-type behavior in the composites with 10 and 20 vol% GNP revealing that charge transport takes place through defect-free GNPs. For the composite with 5 vol % GNP the observed semiconductor-type behavior was explained by a two dimensional variable range hopping mechanism. σ|| shows metallic-type conductivity in the composite with 20 GNP vol% and positive dσ||/dT slope in the composites with 5 and 10 GNP vol%.Ministerio de Economía y Competitividad de España y Fondos Europeos FEDER - MAT2015-67889-PPremio Mensual Publicación Científica Destacada de la US. Facultad de Físic

    Graphene nanoplatelets for electrically conductive 3YTZP composites densified by pressureless sintering

    Get PDF
    3 mol% yttria tetragonal zirconia polycrystalline (3YTZP) ceramic composites with 2.5, 5 and 10 vol% graphene nanoplatelets (GNP) were pressureless sintered in argon atmosphere between 1350 and 1450 °C. The effects of the GNP content and the sintering temperature on the densification, microstructure and electrical properties of the composites were investigated. An isotropic distribution of GNP surrounding ceramic regions was exhibited regardless the GNP content and sintering temperature used. Electrical conductivity values comparable to the ones of fully dense composites prepared by more complex techniques were obtained, even though full densification was not achieved. While the composite with 5 vol% GNP exhibited electrical anisotropy with a semiconductor-type behaviour, the composite with 10 vol% GNP showed an electrically isotropic metallic-type behaviour.Ministerio de Economía y Competitividad MAT2015-67889-

    A first insight into the microstructure and crack propagation in novel boron nitride nanosheet/3YTZP composites

    Get PDF
    In this work, novel 3mol% yttria tetragonal zirconia polycristalline (3YTZP) ceramic composites with boron nitride nanosheets (BNNS) are investigated for the first time. Highly densified composites with 1 and 4vol% BNNS were obtained by spark plasma sintering (SPS) after BNNS synthesis using a solution exfoliation method and BNNS dispersion into the ceramic powder by ultrasonication. The BNNS presented homogeneous distribution throughout the ceramic matrix and preferential alignment in the plane perpendicular to the pressing axis during SPS. The BNNS incorporation had practically no effect on the Vickers hardness of the material nor on the Young's modulus. Anisotropy in crack development was found in the composite with 4%vol BNNS, together with a mechanism of extensive microcracking. Several energy-absorbing mechanisms during crack propagation, such as crack deflection, crack bridging, crack branching, BNNS pull-out and BNNS debonding, were identified in the composites by a close observation of the indentation-induced fracture paths.Ministerio de Ciencia e Innovación PGC-2018-101377-B-10

    Microstructure and impedance spectroscopy of 3YTZP/SWNT ceramic nanocomposites

    Get PDF
    This work provides new insights on microstructure and electrical properties of 3 mol% Y2O3–ZrO2 (3YTZP) composites with 0.5, 1, and 1.5 vol% single walled carbon nanotubes (SWNTs). The composites were spark plasma sintered (SPS) in identical conditions at 1250 °C from powder prepared by two different processing routines, with the aim of optimizing the SWNTs dispersion throughout the ceramic matrix. High densification and submicrometric grain size were achieved in all the composites. Electrical properties of the composites were characterized in a wide temperature range, and modeling of the impedance properties was approached by means of an equivalent circuit that allows separation of the individual SWNT bundles contribution to resistance from the resistance due to junctions between bundles. Effects of the homogeneous distribution of SWNTs at the ceramic grain boundaries on the crystalline phases, percolation threshold, total conductivity and evolution of junctions׳ resistivity with temperature were analyzed and discussed.España Ministerio de Ciencia e Innovación MAT2012-34217Junta de Andalucia P12-FQM107

    Evidence of nanograin cluster coalescence in spark plasma sintered α-Al2O3

    Get PDF
    The aim of this study is to elucidate the coarsening kinetics involved during densification of fine-grained pure α-alumina by spark plasma sintering. Low temperature and short dwell time sintering conditions were used to preserve the nanocrystalline structure of the starting commercial powder (about 50 nm). Notwithstanding the above, submicron grain coarsened microstructures have been developed. The microstructure evolution of alumina under different sintering conditions points to a nanograin rotation densification mechanism as being responsible for the fast grain growth observed.Ministerio de Ciencia e Innovación MAT2009-1107

    The role of carbon nanotubes on the stability of tetragonal zirconia polycrystals

    Get PDF
    The effect of single walled carbon nanotubes (SWNT) at zirconia grain boundaries on the stability of a tetragonal zirconia polycrystalline matrix has been explored in as–sintered composites and after low–temperature hydrothermal degradation (LTD) experiments. For this purpose, highly–dense 3 mol% Y2O3–doped tetragonal zirconia polycrystalline (3YTZP) ceramics and SWNT/3YTZP composites were prepared by spark plasma sintering (SPS). Quantitative X–ray diffraction analysis and microstructural observations point out that an increasing amount of well–dispersed SWNT bundles surrounding zirconia grains decreases the metastable tetragonal phase retention in the ceramic matrix after sintering. In contrast, the tetragonal ceramic grains in composites with SWNTs are less sensitive to the presence of water, i.e. to undergo a martensitic transformation under LTD conditions, than monolithic 3YTZP ceramics. The SWNT incorporation diminishes micro–cracking due to tetragonal to monoclinic ZrO2 phase transformation in the composites.Ministerio de Economía y Competitividad de España y Fondos Europeos FEDER - MAT2015–67889–PJunta de Andalucía - P12–FQM–107

    Study of the Influence of Sintering Atmosphere and Mechanical Activation on the Synthesis of Bulk Ti2AlN MAX Phase Obtained by Spark Plasma Sintering

    Get PDF
    The influence of the mechanical activation process and sintering atmosphere on the microstructure and mechanical properties of bulk Ti2AlN has been investigated. The mixture of Ti and AlN powders was prepared in a 1:2 molar ratio, and a part of this powder mixture was subjected to a mechanical activation process under an argon atmosphere for 10 h using agate jars and balls as milling media. Then, the sintering and production of the Ti2AlN MAX phase were carried out by Spark Plasma Sintering under 30 MPa with vacuum or nitrogen atmospheres and at 1200 °C for 10 min. The crystal structure and microstructure of consolidated samples were characterized by X-ray Diffraction, Scanning Electron Microscopy, and Energy Dispersive X-ray Spectroscopy. The X-ray diffraction patterns were fitted using the Rietveld refinement for phase quantification and determined their most critical microstructural parameters. It was determined that by using nitrogen as a sintering atmosphere, Ti4AlN3 MAX phase and TiN were increased at the expense of the Ti2AlN. In the samples prepared from the activated powders, secondary phases like Ti5Si3 and Al2O3 were formed. However, the higher densification level presented in the sample produced by using both nitrogen atmosphere and MAP powder mixture is remarkable. Moreover, the high-purity Ti2AlN zone of the MAX-1200 presented a hardness of 4.3 GPa, and the rest of the samples exhibited slightly smaller hardness values (4.1, 4.0, and 4.2 GPa, respectively) which are matched with the higher porosity observed on the SEM images.España, Universidad de Sevilla CITIUS under the grant PPIT-2021, project no. 2021/00000691España project funded by the Madrid region under program S2018/NMT-4381 MAT4.0-C

    Hardness and flexural strength of single-walled carbon nanotube/alumina composites

    Get PDF
    This work adds new experimental facts on room temperature hardness and flexural strength of alumina and composites with 1, 2, 5 and 10 vol% single-walled carbon nanotubes (SWNT) with similar grain size. Monolithic Al2O3 and composites were spark plasma sintered (SPS) in identical conditions at 1300 &Deg;C, achieving high density, submicrometric grain size and a reasonably homogeneous distribution of SWNT along grain boundaries for all compositions with residual agglomerates. Vickers hardness values comparable to monolithic alumina were obtained for composites with low (1 vol%) SWNT content, though they decreased for higher concentrations, attributed to the fact that SWNT constitute a softer phase. Three-point bending flexural strength also decreased with increasing SWNT content. Correlation between experimental results and microstructural analysis by electron microscopy indicates that although SWNT agglomerates have often been blamed for detrimental effects on the mechanical properties of these composites, they are not the main cause for the reported decay in flexural strength.Ministerio de Ciencia e Innovación (España) MAT2009-11078 MAT2012-34217Junta de Andalucía P12-FQM-107

    Enhanced carbon nanotube dispersion in 3YTZP/SWNTs composites and its effect on room temperature mechanical and electrical properties

    Get PDF
    In this work, several modifications of the colloidal processing technique and spark plasma sintering (SPS) to prepare yttria tetragonal zirconia composites (YTZP) with single walled carbon nanotubes (SWNT) have been tested with the aim of eliminating SWNT agglomerates. These modifications include high versus low energy ultrasonic agitation during colloidal processing, lyophilization of the 3YTZP/SWNT slurry and electrical insulation during sintering of the composites. Semi-quantitative microstructural characterization of the carbon nanotube distribution in the sintered composites showed that high energy ultrasonic agitation reduces drastically agglomerate size. Lyophilization of the mixed suspensions avoids SWNT bundle size growth. Combination of both produces an enhanced carbon nanotube network distribution along the grain boundaries (GB) due to the absence of carbon nanotube agglomerates and to a limited SWNT bundle size. This results in an increase of the real SWNT content in the GBs up to nominal SWNT content and therefore an enhanced SWNT efficiency in the composites. The agglomerate-free highly-dispersed composites exhibit a decrease in density together with grain size refinement, a decrease in room temperature hardness, an increase in flexural strength and a most significant increase in room temperature electrical conductivity. Improved SWNT distribution also lowers electrical percolation threshold to a very low level in SWNT ceramic composites, <1 vol% SWNT,Ministerio de Economía y Competitividad español - MAT2012- 34217Junta de Andalucía - P12-FQM-107
    corecore