47 research outputs found

    Author Age Prediction from Text using Linear Regression

    Get PDF
    While the study of the connection between discourse patterns and personal identification is decades old, the study of these patterns using language technologies is relatively recent. In that more recent tradition we frame author age prediction from text as a regression problem. We explore the same task using three very different genres of data simultaneously: blogs, telephone conversations, and online forum posts. We employ a technique from domain adaptation that allows us to train a joint model involving all three corpora together as well as separately and analyze differences in predictive features across joint and corpusspecific aspects of the model. Effective features include both stylistic ones (such as POS patterns) as well as content oriented ones. Using a linear regression model based on shallow text features, we obtain correlations up to 0.74 and mean absolute errors between 4.1 and 6.8 years.

    Robust Knowledge Graph Completion with Stacked Convolutions and a Student Re-Ranking Network

    Get PDF
    Knowledge Graph (KG) completion research usually focuses on densely connected benchmark datasets that are not representative of real KGs. We curate two KG datasets that include biomedical and encyclopedic knowledge and use an existing commonsense KG dataset to explore KG completion in the more realistic setting where dense connectivity is not guaranteed. We develop a deep convolutional network that utilizes textual entity representations and demonstrate that our model outperforms recent KG completion methods in this challenging setting. We find that our model's performance improvements stem primarily from its robustness to sparsity. We then distill the knowledge from the convolutional network into a student network that re-ranks promising candidate entities. This re-ranking stage leads to further improvements in performance and demonstrates the effectiveness of entity re-ranking for KG completion.Comment: The Joint Conference of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (ACL-IJCNLP 2021

    A comparative evaluation of socratic versus didactic tutoring

    Get PDF
    While the effectiveness of one-on-one human tutoring has been well established, a great deal of controversy surrounds the issue of which features of tutorial dialogue separate effective uses of dialogue in tutoring from those that are less effective. In this paper we present a formal comparison of Socratic versus Didactic style tutoring that argues in favor of the Socratic tutoring style

    Towards Value-Sensitive Learning Analytics Design

    Full text link
    To support ethical considerations and system integrity in learning analytics, this paper introduces two cases of applying the Value Sensitive Design methodology to learning analytics design. The first study applied two methods of Value Sensitive Design, namely stakeholder analysis and value analysis, to a conceptual investigation of an existing learning analytics tool. This investigation uncovered a number of values and value tensions, leading to design trade-offs to be considered in future tool refinements. The second study holistically applied Value Sensitive Design to the design of a recommendation system for the Wikipedia WikiProjects. To proactively consider values among stakeholders, we derived a multi-stage design process that included literature analysis, empirical investigations, prototype development, community engagement, iterative testing and refinement, and continuous evaluation. By reporting on these two cases, this paper responds to a need of practical means to support ethical considerations and human values in learning analytics systems. These two cases demonstrate that Value Sensitive Design could be a viable approach for balancing a wide range of human values, which tend to encompass and surpass ethical issues, in learning analytics design.Comment: The 9th International Learning Analytics & Knowledge Conference (LAK19

    Towards an Intelligent Tutor for Mathematical Proofs

    Get PDF
    Computer-supported learning is an increasingly important form of study since it allows for independent learning and individualized instruction. In this paper, we discuss a novel approach to developing an intelligent tutoring system for teaching textbook-style mathematical proofs. We characterize the particularities of the domain and discuss common ITS design models. Our approach is motivated by phenomena found in a corpus of tutorial dialogs that were collected in a Wizard-of-Oz experiment. We show how an intelligent tutor for textbook-style mathematical proofs can be built on top of an adapted assertion-level proof assistant by reusing representations and proof search strategies originally developed for automated and interactive theorem proving. The resulting prototype was successfully evaluated on a corpus of tutorial dialogs and yields good results.Comment: In Proceedings THedu'11, arXiv:1202.453
    corecore