111 research outputs found

    Prognostic significance of endogenous adhesion/growth-regulatory lectins in lung cancer

    Get PDF
    Objective: To determine the expression of endogenous adhesion/growth-regulatory lectins and their binding sites using labeled tissue lectins as well as the binding profile of hyaluronic acid as an approach to define new prognostic markers. Methods: Sections of paraffin-embedded histological material of 481 lungs from lung tumor patients following radical lung excision processed by a routine immunohistochemical method (avidin-biotin labeling, DAB chromogen). Specific antibodies against galectins-1 and - 3 and the heparin-binding lectin were tested. Staining by labeled galectins and hyaluronic acid was similarly visualized by a routine protocol. After semiquantitative assessment of staining, the results were compared with the pT and pN stages and the histological type. Survival was calculated by univariate and multivariate methods. Results: Binding of galectin-1 and its expression tended to increase, whereas the parameters for galectin-3 decreased in advanced pT and pN stages at a statistically significant level. The number of positive cases was considerably smaller among the cases with small cell lung cancer than in the group with non-small-cell lung cancer, among which adenocarcinomas figured prominently with the exception of galectin-1 expression. Kaplan-Meier computations revealed that the survival rate of patients with galectin-3-binding or galectin-1-expressing tumors was significantly poorer than that of the negative cases. In the multivariate calculations of survival lymph node metastases ( p < 0.0001), histological type ( p = 0.003), galectin-3-binding capacity ( p = 0.01), galectin-3 expression ( p = 0.03) and pT status ( p = 0.003) proved to be independent prognostic factors, not correlated with the pN stage. Conclusion: The expression and the capacity to bind the adhesion/growth regulatory galectin-3 is defined as an unfavorable prognostic factor not correlated with the pTN stage. Copyright (C) 2005 S. Karger AG, Basel

    Galectin-1 as a potential cancer target

    Get PDF
    Galectins are a family of structurally related carbohydrate-binding proteins, which are defined by their affinity for poly-N-acetyllactosamine-enriched glycoconjugates and sequence similarities in the carbohydrate recognition domain. Galectin-1, a member of this family, contributes to different events associated with cancer biology, including tumour transformation, cell cycle regulation, apoptosis, cell adhesion, migration and inflammation. In addition, recent evidence indicates that galectin-1 contributes to tumour evasion of immune responses. Given the increased interest of tumour biologists and clinical oncologists in this field and the potential use of galectins as novel targets for anticancer drugs, we summarise here recent advances about the role of galectin-1 in different events of tumour growth and metastasis

    Cell cycle and aging, morphogenesis, and response to stimuli genes are individualized biomarkers of glioblastoma progression and survival

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Glioblastoma is a complex multifactorial disorder that has swift and devastating consequences. Few genes have been consistently identified as prognostic biomarkers of glioblastoma survival. The goal of this study was to identify general and clinical-dependent biomarker genes and biological processes of three complementary events: lifetime, overall and progression-free glioblastoma survival.</p> <p>Methods</p> <p>A novel analytical strategy was developed to identify general associations between the biomarkers and glioblastoma, and associations that depend on cohort groups, such as race, gender, and therapy. Gene network inference, cross-validation and functional analyses further supported the identified biomarkers.</p> <p>Results</p> <p>A total of 61, 47 and 60 gene expression profiles were significantly associated with lifetime, overall, and progression-free survival, respectively. The vast majority of these genes have been previously reported to be associated with glioblastoma (35, 24, and 35 genes, respectively) or with other cancers (10, 19, and 15 genes, respectively) and the rest (16, 4, and 10 genes, respectively) are novel associations. <it>Pik3r1</it>, <it>E2f3, Akr1c3</it>, <it>Csf1</it>, <it>Jag2</it>, <it>Plcg1</it>, <it>Rpl37a</it>, <it>Sod2</it>, <it>Topors</it>, <it>Hras</it>, <it>Mdm2, Camk2g</it>, <it>Fstl1</it>, <it>Il13ra1</it>, <it>Mtap </it>and <it>Tp53 </it>were associated with multiple survival events.</p> <p>Most genes (from 90 to 96%) were associated with survival in a general or cohort-independent manner and thus the same trend is observed across all clinical levels studied. The most extreme associations between profiles and survival were observed for <it>Syne1</it>, <it>Pdcd4</it>, <it>Ighg1</it>, <it>Tgfa</it>, <it>Pla2g7</it>, and <it>Paics</it>. Several genes were found to have a cohort-dependent association with survival and these associations are the basis for individualized prognostic and gene-based therapies. <it>C2</it>, <it>Egfr</it>, <it>Prkcb</it>, <it>Igf2bp3</it>, and <it>Gdf10 </it>had gender-dependent associations; <it>Sox10</it>, <it>Rps20</it>, <it>Rab31</it>, and <it>Vav3 </it>had race-dependent associations; <it>Chi3l1</it>, <it>Prkcb</it>, <it>Polr2d</it>, and <it>Apool </it>had therapy-dependent associations. Biological processes associated glioblastoma survival included morphogenesis, cell cycle, aging, response to stimuli, and programmed cell death.</p> <p>Conclusions</p> <p>Known biomarkers of glioblastoma survival were confirmed, and new general and clinical-dependent gene profiles were uncovered. The comparison of biomarkers across glioblastoma phases and functional analyses offered insights into the role of genes. These findings support the development of more accurate and personalized prognostic tools and gene-based therapies that improve the survival and quality of life of individuals afflicted by glioblastoma multiforme.</p

    Galectin-1, a gene preferentially expressed at the tumor margin, promotes glioblastoma cell invasion

    Get PDF
    BACKGROUND: High-grade gliomas, including glioblastomas (GBMs), are recalcitrant to local therapy in part because of their ability to invade the normal brain parenchyma surrounding these tumors. Animal models capable of recapitulating glioblastoma invasion may help identify mediators of this aggressive phenotype. METHODS: Patient-derived glioblastoma lines have been propagated in our laboratories and orthotopically xenografted into the brains of immunocompromized mice. Invasive cells at the tumor periphery were isolated using laser capture microdissection. The mRNA expression profile of these cells was compared to expression at the tumor core, using normal mouse brain to control for host contamination. Galectin-1, a target identified by screening the resulting data, was stably over-expressed in the U87MG cell line. Sub-clones were assayed for attachment, proliferation, migration, invasion, and in vivo tumor phenotype. RESULTS: Expression microarray data identified galectin-1 as the most potent marker (p-value 4.0 x 10(-8)) to identify GBM cells between tumor-brain interface as compared to the tumor core. Over-expression of galectin-1 enhanced migration and invasion in vitro. In vivo, tumors expressing high galectin-1 levels showed enhanced invasion and decreased host survival. CONCLUSIONS: In conclusion, cells at the margin of glioblastoma, in comparison to tumor core cells, have enhanced expression of mediators of invasion. Galectin-1 is likely one such mediator. Previous studies, along with the current one, have proven galectin-1 to be important in the migration and invasion of glioblastoma cells, in GBM neoangiogenesis, and also, potentially, in GBM immune privilege. Targeting this molecule may offer clinical improvement to the current standard of glioblastoma therapy, i.e. radiation, temozolomide, anti-angiogenic therapy, and vaccinotherapy

    The Role of the State and the Image of Migrants: Debating Dutch Civic Integration Policies, 2003-2011

    No full text
    corecore