220 research outputs found

    Surface Roughness Contribution to the Auger Electron Emission

    Get PDF
    Scanning Auger Microscopy (SAM) experiments have shown that z height and θ slope relative to the analysed spot are parameters that contribute to the measured Auger intensity I(z, θ). For greater analysed areas specific to Auger Electron Spectroscopy (AES), the knowledge of height and slope statistical distributions P(z) and P(θ) is required. These functions have been determined by means of profilometric data. The spatial resolution of the used tactile profilometer is similar to that which characterizes AES. A mathematical relationship I { P(z), P(θ) } has been set up for Si samples whose roughness is well defined. On the other hand, Auger images can be compared to level sections

    Absorption correction of Fe Lab emission from iron oxides

    Full text link

    Metallo-solid lipid nanoparticles as colloidal tools for meso-macroporous supported catalysts

    Get PDF
    Meso–macroporous silica containing iron oxide nanoparticles (15–20 nm) was synthesized by formulating solid lipid nanoparticles and metallosurfactant as both template and metal source. Because of the high active surface area of the catalyst, the material exhibits an excellent performance in a Fenton-like reaction for methylene blue (MB) degradation, even at low amount of iron oxide (5% TOC after 14 h)

    A Contractual Approach to Investor-State Regulatory Disputes

    Get PDF
    International investment arbitral tribunals are increasingly tasked with resolving regulatory disputes. This relatively new form of dispute involves a challenge by a foreign investor to a host state’s generally applicable regulation, enacted in good faith to promote the public interest but resulting incidentally in harm to the investor’s business. Such claims typically invoke the “fair and equitable treatment” standard provided for in the bilateral investment treaty between the host state and the investor’s home state. The dominant view among commentators, and increasingly among the tribunals themselves, is that regulatory disputes should be analyzed within a public law framework, using tools derived from constitutional or administrative law. That means, for example, balancing the investor’s rights and host state’s regulatory concerns as part of a proportionality analysis. I argue that the public law approach is flawed because it requires tribunals to weigh incommensurable values and ultimately to make policy judgments when they lack the expertise and legitimacy to do so. This Article proposes that tribunals instead draw on tools from contract law and theory to approximate what the contracting states intended when they agreed to a fair and equitable treatment standard. The investment treaties themselves give no guidance on how that standard should be applied to regulatory disputes. When courts confront similar gaps in contracts, they do not simply abandon the inquiry into the parties’ intent but instead apply additional tools or principles to form the best possible estimate. The Article explores three specific tools: a default rule approach and two default standards derived from contract law’s analysis of changed circumstances. More generally, I argue that a contractual approach, by focusing tribunals on the contracting states’ intent rather than requiring them to independently assess the substance of a host state’s policy, will facilitate more principled reasoning as well as enhance the tribunals’ legitimacy, and thereby better promote the goals of international investment in the long run

    Spectral and spatial shaping of Smith Purcell Radiation

    Full text link
    The Smith Purcell effect, observed when an electron beam passes in the vicinity of a periodic structure, is a promising platform for the generation of electromagnetic radiation in previously-unreachable spectral ranges. However, most of the studies of this radiation were performed on simple periodic gratings, whose radiation spectrum exhibits a single peak and its higher harmonics predicted by a well-established dispersion relation. Here, we propose a method to shape the spatial and spectral far-field distribution of the radiation using complex periodic and aperiodic gratings. We show, theoretically and experimentally, that engineering multiple peak spectra with controlled widths located at desired wavelengths is achievable using Smith-Purcell radiation. Our method opens the way to free-electron driven sources with tailored angular and spectral response, and gives rise to focusing functionality for spectral ranges where lenses are unavailable or inefficient

    Smith-Purcell Radiation from Low-Energy Electrons

    Full text link
    Recent advances in the fabrication of nanostructures and nanoscale features in metasurfaces offer a new prospect for generating visible, light emission from low energy electrons. In this paper, we present the experimental observation of visible light emission from low-energy free electrons interacting with nanoscale periodic surfaces through the Smith-Purcell (SP) effect. SP radiation is emitted when electrons pass in close proximity over a periodic structure, inducing collective charge motion or dipole excitations near the surface, thereby giving rise to electromagnetic radiation. We demonstrate a controlled emission of SP light from nanoscale gold gratings with periodicity as small as 50 nm, enabling the observation of visible SP radiation by low energy electrons (1.5 to 6 keV), an order of magnitude lower than previously reported. We study the emission wavelength and intensity dependence on the grating pitch and electron energy, showing agreement between experiment and theory. Further reduction of structure periodicity should enable the production of SP-based devices that operate with even slower electrons that allow an even smaller footprint and facilitate the investigation of quantum effects for light generation in nanoscale devices. A tunable light source integrated in an electron microscope would enable the development of novel electron-optical correlated spectroscopic techniques, with additional applications ranging from biological imaging to solid-state lighting.Comment: 16 pages, 4 figure

    Scanning Mechanical Microscopy of Laser Ablated Volumes Related to Inductively Coupled Plasma-Mass Spectrometry

    Get PDF
    Scanning mechanical microscopy based on the point by point sampling of the target surface was used to characterize volumes of minerals ablated by laser pulses (Nd: YAG, = 1064 nm, 140 ÎĽs pulse-width). Differentiated volumes resulting from vaporization and exfoliation mechanisms were selectively measured. Ablated volumes of natural pyrite (cubic FeS2), marcasite (orthorhombic FeS2) and arsenopyrite AsFeS, were transported into an inductively coupled plasma torch for subsequent mass analysis. The log of the S34 Fe57, and As75 mass intensities was linearly correlated with the log of the dimensions of the vaporized crater induced by the laser shots while large particles had no effect on the measured intensities. A memory effect for As was observed when a nylon tube was used to carry the ablated materials into the plasma torch. The memory effect was decreased by using a copper tube resulting probably from a difference in the electrical properties of the tubing systems leading to a lower adsorption of As within the copper tube than for the case of the nylon tube

    Cathodoluminescence Applied to the Microcharacterization of Mineral Materials: A Present Status in Experimentation and Interpretation

    Get PDF
    Experimentation and interpretation of cathodoluminescence (CL) microscopy and spectroscopy applied to the microcharacterization of material minerals are reviewed. The origins of the intrinsic (host lattice) and extrinsic (impurities) luminescence emissions in crystals are briefly discussed. Merits and limitations of the available techniques are illustrated. CL emission changes as a function of the incident electron dose are illustrated for the case of natural quartz and sphalerite (ZnS) crystals. These effects are discussed in terms of the development of bulk charging, production of heat, diffusion of impurities, and creation of lattice defects induced by the incident ionizing particles. Although CL emission is mostly extrinsic in origin there is no general rule for identifying the nature of impurities from the CL emission spectra of minerals. However there is potential for using CL spectroscopy for trace element analysis as presented for the case of minerals containing rare-earth luminescent ions. The CL emission is a signature of the crystal-chemistry properties of minerals and hence contains potential genetic information. Some of the applications of CL emissions in the geosciences are summarized

    Monochromatic X-ray source based on scattering from a magnetic nanoundulator

    Full text link
    We present a novel design for an ultra-compact, passive light source capable of generating ultraviolet and X-ray radiation, based on the interaction of free electrons with the magnetic near-field of a ferromagnet. Our design is motivated by recent advances in the fabrication of nanostructures, which allow the confinement of large magnetic fields at the surface of ferromagnetic nanogratings. Using ab initio simulations and a complementary analytical theory, we show that highly directional, tunable, monochromatic radiation at high frequencies could be produced from relatively low-energy electrons within a tabletop design. The output frequency is tunable in the extreme ultraviolet to hard X-ray range via electron kinetic energies from 1 keV-5 MeV and nanograting periods from 1 {\mu}m-5 nm. Our design reduces the scale, cost, and complexity of current free-electron-driven light schemes, bypassing the need for lengthy acceleration stages in conventional synchrotrons and free-electron lasers and driving lasers in other compact designs. Our design could help realize the next generation of tabletop or on-chip X-ray sources.Comment: 8 pages, 4 figure
    • …
    corecore