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ABSTRACT Meso-macroporous silica containing iron oxide nanoparticles (15-20 nm) was 

synthesized by formulating solid lipid nanoparticles and metallosurfactant as both template and 

metal source. Due to the high active surface area of the catalyst, the material exhibits an 

excellent performance in a Fenton-like reaction for methylene blue (MB) degradation, even at 

low amount of iron oxide (5% TOC after 14h).  
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INTRODUCTION 

In recent years, metal oxides supported on clay,1-3 silica4-7 or carbon8-10 materials have 

received enormous attention in various fields including heterogeneous catalysis. Among them, 

silica-supported iron oxide has been intensively studied for wastewater treatment such as 

degradation of organic dyes through Fenton-like reactions.11-12 Mesoporous silica has been also 

widely studied as a support material due to its high pore volume, surface area as well as ordered 

pore network which provide a good active site accessibility.13-14 Several studies have proven that 

iron oxide dispersed in mesoporous silica supports shows not only a considerable improvement 

of catalytic ability, but also better stability of iron oxide, compared to free iron oxide particles.15-

18 In addition, silica supports combining meso and macroporosity, which bring higher diffusion 

and throughput rates, could also improve catalytic properties such as reaction rate.19 Some recent 

reports have shown the catalytic activity of yolk-shell like structured iron oxide catalysts 

supported on mesoporous silica with macroporous void spaces.20-22 Nevertheless, this synthesis 

requires multiple steps. Moreover, the iron oxide nanoparticles (NPs) have relatively high sizes 

(~100 nm) and a relative surface/quantity ratio that can still be significantly improved by 

tailoring NP size.  

In this study, we report the preparation of Fe2O3@meso-macroporous silica templated with 

solid lipid nanoparticles (SLNs) and metallosurfactants as iron source, and the application to the 

degradation of methylene blue (MB) in aqueous solution by a dark Fenton-like reaction initiated 

by H2O2.
23 The key point of this work is that the size of iron oxide nanoparticles embedded in the 

meso-macroporous matrices has been decreased to 15-20 nm in diameter, to give high surface 

area of the active catalytic sites in comparison with the previous sub-micron scald iron oxide.20-
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22, 24 As a matter of fact, these new Fe2O3@meso-macroporous silica matrix can successfully 

degrade the pollutant with twelve-times less iron oxide, than previously reported. 20, 25 

 

EXPERIMENTAL SECTION 

Chemicals: Tetramethylorthosilicate (TMOS), Pluronic P123 and 

hexadecyltrimethylammonium bromide (CTAB) were purchased from Sigma-Aldrich. N-

hexadecylpalmitate (NHP) was purchased from Acros. Ethanol, methanol and Iron (III) chloride 

(FeCl3) were purchased from Alfa Aesar. Water was deionized and purified using a Milli-Q pack 

system. All reagents were used without further purification. 

Synthesis of metallosurfactant CTAF (C16H33N(CH3)3N+FeCl3Br-, CetylTrimethyl-

Ammonium-trichloromonobromoFerrate): CTAF was synthesized as reported previously.26 

Briefly, 1.77 g of FeCl3 (11.0 mol) was added to 4.0 g of CTAB (11.0 mmol) that was already 

dissolved in 50 mL of methanol. Then, the solution was heated to reflux overnight. The methanol 

was evaporated using rotary evaporator and then, the metallosurfactant CTAF was dried in vacuo 

at 60°C for more than 4h. 

Preparation of SLN@CTAF: N-hexadecylpalmitate (NHP)-based solid lipid nanoparticles 

(SLNs) were prepared by the ultra-sonication of hot emulsion method. In a typical procedure, a 

flask containing 2.2 g of NHP and 20mL of aqueous micellar solution (6.9wt% of Pluronic P123) 

were heated separately at 70°C. The molten oil phase (NHP) was added to 20 mL of aqueous 

micellar solution and the mixture was sonicated for 5 min with an ultrasonic device (Branson 

Sonifier, 60W). After cooling to room temperature under vigorous stirring, 350 mg of 

metallosurfactant CTAF added to the SLN dispersion and the mixture was kept under stirring for 

1 hour. 
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Synthesis of Fe2O3@meso-marcoporous silica material (Silicalization of SLN@CTAF): 

0.5 mL of hydrochloric acid  (37 wt%) was added to 20 mL of SLN dispersion decorated by 

CTAF (SLN@CTAF), as prepared above. Then 2.3 g of tetramethylorthosilicate (TMOS) was 

added dropwise to the solution. The surfactant (P123) / silica precursor (TMOS) molar ratio (R) 

was 0.016. The mixture was stirred vigorously for 1 hour at room temperature then and was held 

at 40°C for 24 h, followed by aging at 100°C for 60 h. ‘Pasty’ as-synthesized silica material was 

transferred into petri dish and dried in vacuo at 30°C for 24 h. ‘Dried’ as-synthesized silica 

material was calcinated at 550°C under air (1°C/min) for 6 h.  

Catalytic performance of Fe2O3@meso-macroporous silica: Fenton-like degradation of MB 

in aqueous solution was performed with the Fe2O3@meso-macroporous silica (denoted as 

catalyst). 15 mg of catalyst (0.86 mg as Fe2O3) was added to a 50 mL beaker containing 20 mL 

of 50 ppm MB solution. Then the suspension was sonicated for 5 min and kept under stirring at 

least for 2h to achieve adsorption equilibrium. 1.2 mL of H2O2 (30 wt%) was added to initiate 

the degradation reaction. No acid or base was added for pH adjustment. All reactions were 

carried out in the dark to avoid the influence of light. At a given interval, 300 L of solution was 

withdrawn and quickly centrifuged at 5000 rpm for 10 min to separate silica material. Then 150 

L of solution was diluted to 3mL for UV-Vis measurement (Agilent CARY-3E). The 

concentration of MB was calculated using standard calibration curve at 664 nm. All data 

reported are the mean (±) standard deviation of at least three different experiments. 

Analyses of methylene blue adsorbed on the catalyst: Methylene blue adsorbed on the 

catalyst was quantified after 1, 3, 5, 7, 10, 12, 16 and 20 h. The catalyst was first filtered, than 

dried in vacuo at 40°C for 6 h. Then, adsorbed methylene blue was extracted with ethanol (3 x 
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20mL). The concentration of MB was determined spectrophotometrically using standard 

calibration curve at 655 nm. 

The repeat use of the catalyst: Repeat use of the catalyst was tested in the same conditions as 

“Catalytic performance of Fe2O3@meso-macroporous silica”, except that the degradation rate 

was measured only at 7 h of reaction time. Silica materials were washed with ethanol to remove 

residual methylene blue, then dried in vacuo at 30°C for 24 h before next use.  

Characterization: Particle sizing by Dynamic light scattering (DLS) and zeta-potential values 

were obtained using a Malvern 3000HSA Zetasizer instrument. Nanoparticle tracking analysis 

(NTA) was performed with Malvern NS300 Nanosight. SAXS measurements were carried out 

using SAXSee mc2 (Anton Paar) apparatus. Transmission electron microscopy (TEM) analysis 

was performed using a Philips CM200 microscope, operated at an accelerating voltage of 200 

kV. N2 adsorption / desorption isotherms were determined on a Micromeritics Tristar 3000 at -

196°C. The mesopore size distribution was calculated by the BJH (Barret, Joyner, Halenda) 

method applied to the adsorption branch of the isotherm. Mercury intrusion porosimetry 

experiments were performed using Micrometiric AutoPore IV. Macropore size distribution was 

obtained by applying the Washburn equation to the mercury intrusion curves. ICP-OES 

elemental analysis was performed on Thermo Fischer ICap 6500. Total organic carbon (TOC) 

analysis was performed using an Online TOC-VCSH Total Organic Carbon Analyzer 

(Shimadzu, Japan).  

 

RESULTS AND DISCUSSION 

Synthesis of Fe2O3@meso-macroporous silica 
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Fe2O3@meso-macroporous silica was prepared (Scheme 1) by adding a silica precursor 

(tetramethoxylsilane, TMOS) to dispersions of solid lipid nanoparticles stabilized by a 

metallosurfactant which was added as co-surfactant. The metallosurfactant, 

C16H33N(CH3)3N
+FeCl3Br- (CTAF), is simply obtained from cetyltrimethylammonium bromide 

and iron (III) chloride.26 Solid lipid nanoparticles were prepared from cetylpalmitate, pluronic 

P123 and CTAF by the ultra-sonication of hot emulsions followed by solidification.  

 

Scheme 1. Synthetic strategy (not to scale): A) CTAF-stabilized solid lipid nanoparticles (SLN) 

dispersed in micellar P123; B) Silica condensation around SLN, giving hexagonally ordered 

mesopores; C) Fe2O3@meso-macroporous silica obtained by calcination 

SLN size distribution was determined using nanoparticle tracking analysis (NTA) and dynamic 

light scattering (DLS) showing polydisperse populations centered on 160 nm and 230 nm, 

respectively (Figure 1A and 1B). This size gap is due to the difference between intensity-based 

measurements in DLS and particle number counting method in NTA. Moreover, by using the 

fluorescence mode in the NTA, the iron-decorated solid lipid nanoparticles are detected and their 

size and concentration do not significantly change with respect to those obtained without the 

filter. The fact that the particles are fluorescent is a direct proof that the iron ions are decorating 
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the SLN. Also, as control experiment, only FeCl3 was added to a SLN dispersion and measured 

using a fluorescence filter in the NTA analysis, which gave very weak signal, compared to 

SLN@CTAF (Supporting information for videos). Indeed, for the FeCl3@SLN system, only 

weak Fe3+-PEO (pluronic P123) interactions could be expected,27 which are not strong enough to 

decorate the SLN interfaces. The adsorption of CTAF at the surface of SLNs was further 

confirmed by zeta potential measurements. The values of  increased with the concentration of 

CTAF with respect to NHP, until a plateau was reached at 47 mV and 1.8 wt% in 

metallosurfactant (16wt% of CTAF in NHP/CTAF mixture).  

 

Figure 1. A) Size distribution of SLN@CTAF obtained from NTA (particle number, see 

Supporting Information for videos); B) Size distribution of SLN@CTAF obtained from DLS 

(intensity) and C) SLN zeta potential as a function of CTAF level.  

By adding TMOS, the dispersions were mineralized through a dual templating mechanism 

combining micellar cooperativity and templating with the SLNs. The reaction medium was kept 

at 40°C for 24 h then at 100°C for 24 h to ensure hydrolysis/polycondensation of silica. The 

obtained ‘pasty’ as-synthesized material was transferred into a petri dish and dried in vacuo at 

30°C for 24 h. Then, the material was calcined at 550°C in air to remove the organic matter and 

to form iron oxide particles, giving the final product, Fe2O3@meso-macroporous silica. The 
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amount of CTAF used to stabilize the SLNs was of 1.8 wt%, which corresponds to the minimum 

for saturation of the SLN by metallosurfactant. 

As shown in Figure 2A, small-angle X-ray scattering (SAXS) analysis indicated that silica 

materials synthesized with 1.8 wt% CTAF gave, before and after calcination, gave hexagonally 

ordered mesopores, with three peaks at a characteristic ratio of 1:√3 :2. In the hybrid, as 

synthesized materials, it can also noticed that the characteristic repeat distance of the solid lipid 

q value.28 Therefore, it 

seems that CTAF is not intercalating the hexylpalmitate in the core of the SLNs.  

N2 absorption-desorption analysis of Fe2O3@meso-macroporous silica showed a type IV 

isotherm (Figure 2C), which is characteristic of mesoporous materials. The isotherm exhibits a 

hysteresis loop in accordance of with pore necking, due to the interconnected mesopores. At high 

relative pressure (P/P0 > 0.9), the N2 adsorbed volume does not reach a plateau, indicating also 

the presence of secondary porosity such as macropores. The pore size distribution obtained by 

the BJH method applied to the adsorption branch isotherm is centered on 7.6 nm (Figure 2D). 

The BET specific surface area and the mesopore volume are 432 m2g-1 and 0.82 cm3g-1, 

respectively. 

Interestingly, silica prepared using more than 1.8 wt% of CTAF gave only wormlike materials, 

with only 1 peak on the diffractogram (Figure 2B). At conc. > 1.8 wt% in CTAF and 6.9 wt% in 

P123, one can observe by DLS a dual distribution of micelles, centered on 13 nm (mixed 

P123/CTAF micelles) and 6 nm (CTAF micelles). In this case, the resulting wormlike network 

exhibits a smaller repetition distance by SAXS (7.7 nm) and smaller pore size as determined by 

N2 adsorption/desportion isotherms (5.6 nm). At conc. < 1.8 wt% and 6.9 wt% in P123 the 

hexagonal structuring of the material is maintained; the repeat distance (Figure 1Bc,d) and the 
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pore size (Figure SI 1) decrease with the increasing amount of metallosurfactant. This could be 

explained by the fact that the size of P123 micelles (at 6.9 wt% P123) decreases by adding CTAF 

from 21 nm to 17 nm (0.6 wt% CTAF), 15 nm (1.2 wt% CTAF), 14 nm (1.8 wt% CTAF). This 

result could be due to the increase of hydrophilicity of CTAF surfactant that disturbs the self-

assembly behavior of P123 micelles.29-30 This also suggests that the metallosurfactant is indeed 

distributed between the micelles of P123 forming the mesopores and the surface of SLNs 

templating the macropores.  
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Figure 2. A) SAXS patterns of (a) Fe2O3@meso-macroporous silica (the catalyst), (b) as-

synthesized material; B) SAXS patterns of meso-macroporous silica prepared with CTAF, (a) 3.0 
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wt%, (b) 2.4 wt% (c) 1.2 wt% and (d) 0.6 wt%; C) N2 adsorption–desorption isotherms and D) 

Pore size distribution of the catalyst; E) Macropore size distribution of the catalyst; F) (a) XRD 

pattern of the catalyst, (b) Commercial hematite from Sigma-Aldrich 

Evidence of the macroporosity was confirmed by mercury intrusion porosimetry experiments 

(Figure 2E), showing that the macropore size distribution of the material is centered at 590 nm, 2 

times larger than the SLNs, with diameters about 230 nm. This could be due to the coalescence 

of lipid nanoparticles, melted at 100°C during the hydrothermal treatment.28, 31-32 The mesopore 

and macropore structures were further confirmed by transmission electron microscopy (TEM) 

micrographs of Fe2O3@meso-macroporous silica, showing macropores with 200-400 nm, 

interconnected through hexagonally ordered mesopores of about 7.6 nm (Figure 3A). In addition, 

TEM images indicated the presence of 15-20 nm iron oxide particles encapsulated within the 

silica matrices. No particles were found on the outer silica surfaces, implying that iron oxide 

growth occurred exclusively inside the silica matrix.   

XRD patterns (Figure 2F) of Fe2O3@meso-macroporous silica are characteristic of amorphous 

silica as evidenced by the broad band around 25°. Small, quite broad peaks are also faintly 

visible (indicated with an asterix) and are in the same position as crystalline hematite (α-Fe2O3). 

The breadth of the Fe2O3 peaks embedded in silica is consistent with nano-sized particles. Using 

the Scherrer equation33 and peaks located at 32.8° and at 35.5° give an average size of 15-20 nm, 

in agreement with the values obtained by TEM. 
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Figure 3. A) TEM image of Fe2O3@meso-macroporous silica; B) TEM-EDX analysis area C) 

TEM-EDX analysis for selected zone 

The iron content (4 wt% Fe, 5.7 wt% Fe2O3) in Fe2O3@meso-macro-porous silica was 

determined using ICP-OES elemental analysis (Table 1), being in agreement with the TEM-EDX 

analysis (Figure 3B and 3C). 

SiO2 
Al2O

3 

Fe2O

3 
MnO MgO CaO Na2O K2O TiO2 P2O5 Others Total 

87.23 0.04 5.73 0.02 < DL < DL 0.02 0.11 < DL 0.24 6.86 100.25 

Table 1. ICP-OES elemental analysis (wt%) of Fe2O3@meso-macroporous silica 

 

Catalytic performance of Fe2O3@meso-macroporous silica  

Catalytic performance of Fe2O3@meso-macroporous silica was tested through dark Fenton-

like degradation of MB in aqueous solution, with H2O2 as initiator. Indeed, Fenton-like reactions 
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are considered as effective advanced oxidation processes (AOPs), which are replacing traditional 

methods like chlorination, for complete dye degradation in water.34-35 Fenton-like reactions are 

based on the catalytic production of hydroxyl radicals, HO∙, which can degrade organic 

compounds under mild conditions.  

Although Fenton-like reactions are powerful with almost of iron-based material like iron oxide, 

rapid scavenging of HO∙ on the iron oxide surface could limit wide applications. Thus, 

accessibility of contaminants to the reaction site should be improved using support material such 

as meso-macroporous silica.15   

The catalytic assays were performed onto iron oxide@meso-macroporous silica with 

hexagonally ordered mesopores that has the highest iron content (4.0 wt% Fe), meaning the one 

obtained with 1.8 wt% of CTAF. The catalysis was performed under similar conditions to those 

reported by Cui et al20 (15 mg of silica containing 0.86 mg vs 10 mg of Fe2O3). As shown in 

Figure 4A-a, b,c in the absence of the either catalyst or H2O2, no dye degradation occurred, 

showing the decrease of concentration, only due to the adsorption of methylene blue on the 

catalyst. The extent of adsorption of MB in the bare silica is slightly higher than into 

Fe2O3@silica, that has a smaller surface area (582 m2/g for bare silica vs 432 m2/g for 

Fe2O3@silica). However, in both cases, the porous catalyst adsorbs 0.053 mg MB/m2 SiO2, 

which is good agreement with the result reported for another mesoporous silica, 0.050 mg/m2.36 

This phenomenon is well documented in the literature36 and it is driven by both electrostatic and 

hydrophobic interactions between the silica surface and the MB. 

When the maximum adsorption is reached (t=0) the oxidant is added to the solution. Then, a 

rapid decrease of methylene blue was observed, as 83% of methylene blue degraded after 7 h 

(Figure 4A-d). With the catalyst of this work, which contains twelve times less catalyst, the 
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conversion rate is similar with Cui’s catalyst (Figure 4A-e). This gain of performance could be 

due to the smaller nanoparticle size of Fe2O3 (15-20 nm vs ~100 nm) having higher active 

surface/iron content, but also to the presence of interconnected macropores through a mesopore 

network that provides higher diffusion, throughput, or in other words, a decrease of internal flow 

resistance. 

After 12 h a colourless solution with no UV-Vis signal (Figure 5B-b) was obtained, indicating 

that all methylene blue in solution had been degraded. Moreover, the extent of MB degradation 

was examined by total organic carbon (TOC) analysis (Figure 5B-a). The TOC value of the 

solution was reduced to 23% after 7 h and to less than 5% after 14 h, showing 2.3 mg carbon/L 

that is close to the mean value of TOC (2.7 mg carbon/L) measured on more than 400 

groundwater samples from 8 European Union countries.37 This result demonstrates that almost 

no organic by-products were produced during the degradation. For example in water treatment, 

total degradation of pollutants is very important, because by-products could be more toxic than 

the pollutants. This is the case of phenol when considering the degradation of MB.38 

Figure 4D shows the variation of MB adsorbed in the meso-macroporous material with time. The 

dye was extracted in ethanol and the quantification was by UV analysis. It appears that total 

degradation of the MB adsorbed in the material is reached after 20 h. Indeed, the catalyst 

changes color from dark blue (t=0) to green (t=14 h) and finally recovers its original colour, 

yellowish (t=20h). 

Finally, it was investigated the influence of the amount of catalyst on the reaction rate. Up to 7h, 

methylene blue degradation rate is enhanced as the amount of catalyst increases. The reaction 

rate could be expressed by a pseudo-first-order model, (Figure 4B) showing an increase in the 

rate constant (k’) with increased amount of catalyst.  
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Figure 4. A) Dark Fenton-like degradation of methylene blue in solution, (a) for the blind 

experiment with only H2O2 (without any catalyst), (b) for the catalyst made in this work, without 

H2O2, (c) for bare SiO2, (d) for the catalyst made in this work, (e) for york-shell structured 

Fe2O3@mesoporous silica (reported by Cui et al.20); B) Extended study of methylene blue 

degradation, using 15mg of catalyst, analysed by (a) UV-Vis and (b) Total Organic Carbon 

(TOC) measurement; C) Effect of catalyst amount on methylene blue degradation for (a) 10 mg, 

(b) 15 mg and (c) 30 mg of catalyst, degradation rate fitted using pseudo-first-order model (inset, 

k’ is the rate constant, R2 is squared correlation coefficient); D) Degradation of methylene blue 

adsorbed on the catalyst, 15 mg of catalyst used, 32.3% of MB adsorbed before H2O2 addition. 
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Figure 5. Repeated usability test of catalyst, 15 mg of catalyst used, and all experiments for 

catalyst reuse were performed for 7 h. 

Reusability studies show (Figure 5) that after 5 runs, catalytic performance of the supported 

catalyst remained quasi-constant (the conversion of MB is of about 83% for 7 h). This result 

clearly suggests that Fe leaching is limited, due to the silica support and the mild reaction 

conditions with pH ~ 4.3, in which, Fe2O3 solubilisation does not occur.39 Moreover, SAXS and 

N2 adsorption-desorption studies (Figure 6) of the catalyst after 5 runs showed that the 

mesoporous network remained unaltered, giving 441 m2g-1 as BET specific surface area and 0.87 

cm3g-1 as mesopore volume. 
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Figure 6. A) SAXS patterns of Fe2O3@meso-macroporous silica after 5th use; B) N2 adsorption–

desorption isotherms and pore size distribution (insert) of Fe2O3@meso-macroporous silica after 

5 runs. 

SUMMARY 

In conclusion, it has been shown the synthesis of Fe2O3 nanoparticles supported in meso-

mesoporous silica through a novel and low-cost template, based on solid lipid nanoparticles 

(SLNs) and iron-containing metallosurfactant. The silica material has hexagonally ordered 

mesopores and interconnected macropores as well as iron oxide nanoparticles of 15-20 nm in 

diameter. This Fe2O3@meso-macroporous silica showed excellent catalytic activity for dark 

Fenton-like reactions in methylene blue degradation: complete degradation could be achieved 

even with a small amount of Fe2O3
20, 25, due to high surface area/weight ratio of iron oxide and 

enhanced diffusion owing to macroporosity. This strategy could be used for other metallic or 

metal oxide nanoparticles embedded in silica matrices40-41, for new applications in catalytic 

processes. 
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