119 research outputs found
Hepatic breast cancer dissemination after an iatrogenic hepatic laceration during talc pleurodesis: a case report
<p>Abstract</p> <p>Background</p> <p>Talc pleurodesis is an effective treatment for malignant pleural effusion. We present a case of an asymptomatic hepatic laceration that occurred during pleurodesis in a breast cancer patient and led to hepatic tumor dissemination.</p> <p>Discussion</p> <p>Pleurodesis is a relatively safe procedure, although previous studies have described malignant invasion of scar tissue.</p> <p>Conclusion</p> <p>To our knowledge, this is the first case report of tumor spread due to a liver puncture during talc pleurodesis in a breast cancer patient.</p
Mechanisms of toxic smoke inhalation and burn injury: Role of neutral endopeptidase and vascular leakage in mice
The effects of neutral endopeptidase (NEP) in acute inflammation in the lung were studied using a newly developed murine model of smoke and burn (SB) injury. C57BL/6 mice were pretreated with an i.v. dose of a specific NEP antagonist CGS-24592 (10 mg/Kg) 1 h prior to SB injury (n = 5–8/group). Mice were anesthetized with i.p. ketamine/xylazine, intubated, and exposed to cooled cotton smoke (2 × 30 s). After s.c. injection of 1 ml 0.9% saline, each received a 40% total body surface area (TBSA) flame burn. Buprenorphene (2 mg/kg) was given i.p. and resuscitated by saline. Evans Blue dye (EB) was injected i.v. 15 min before sacrifice. Lung wet/dry weight ratio was measured. After vascular perfusion, lungs were analyzed for their levels of EB dye and myeloperoxidase (MPO). In mice pretreated with CGS-24592 followed by SB injury the EB levels were significantly higher (61%, p = 0.043) than those with SB injury alone. There was a significant increase (144%, p = 0.035) in EB dye in animals with SB injury alone as compared to shams. In mice pretreated with CGS-24592 prior to SB injury wet/dry weight ratios were significantly (27%, p = 0.042) higher compared to animals with SB injury alone. CGS-24592 pretreatment also caused a significant increase in MPO (29%, p = 0.026) as compared to mice with SB injury alone. In conclusion the current study indicates that specific NEP inhibitor CGS 24592 exacerbates the SB-induced lung injury and inflammation in mice
Active Site Mutations Change the Cleavage Specificity of Neprilysin
Neprilysin (NEP), a member of the M13 subgroup of the zinc-dependent endopeptidase family is a membrane bound peptidase capable of cleaving a variety of physiological peptides. We have generated a series of neprilysin variants containing mutations at either one of two active site residues, Phe563 and Ser546. Among the mutants studied in detail we observed changes in their activity towards leucine5-enkephalin, insulin B chain, and amyloid β1–40. For example, NEPF563I displayed an increase in preference towards cleaving leucine5-enkephalin relative to insulin B chain, while mutant NEPS546E was less discriminating than neprilysin. Mutants NEPF563L and NEPS546E exhibit different cleavage site preferences than neprilysin with insulin B chain and amyloid ß1–40 as substrates. These data indicate that it is possible to alter the cleavage site specificity of neprilysin opening the way for the development of substrate specific or substrate exclusive forms of the enzyme with enhanced therapeutic potential
MLH1 mediates PARP-dependent cell death in response to the methylating agent N-methyl-N-nitrosourea
Background:Methylating agents such as N-methyl-N-nitrosourea (MNU) can cause cell cycle arrest and death either via caspase-dependent apoptosis or via a poly(ADP-ribose) polymerase (PARP)-dependent form of apoptosis. We wished to investigate the possible role of MLH1 in signalling cell death through PARP.Methods:Fibroblasts are particularly dependent on a PARP-mediated cell death response to methylating agents. We used hTERT-immortalised normal human fibroblasts (WT) to generate isogenic MLH1-depleted cells, confirmed by quantitative PCR and western blotting. Drug resistance was measured by clonogenic and cell viability assays and effects on the cell cycle by cell sorting. Damage signalling was additionally investigated using immunostaining.Results:MLH1-depleted cells were more resistant to MNU, as expected. Despite having an intact G2/M checkpoint, the WT cells did not initially undergo cell cycle arrest but instead triggered cell death directly by PARP overactivation and nuclear translocation of apoptosis-inducing factor (AIF). The MLH1-depleted cells showed defects in this pathway, with decreased staining for phosphorylated H2AX, altered PARP activity and reduced AIF translocation. Inhibitors of PARP, but not of caspases, blocked AIF translocation and greatly decreased short-term cell death in both WT and MLH1-depleted cells. This MLH1-dependent response to MNU was not blocked by inhibitors of ATM/ATR or p53.Conclusion:These novel data indicate an important role for MLH1 in signalling PARP-dependent cell death in response to the methylating agent MNU
Rescue of replication failure by Fanconi anaemia proteins
Chromosomal aberrations are often associated with incomplete genome duplication, for instance at common fragile sites, or as a consequence of chemical alterations in the DNA template that block replication forks. Studies of the cancer-prone disease Fanconi anaemia (FA) have provided important insights into the resolution of replication problems. The repair of interstrand DNA crosslinks induced by chemotherapy drugs is coupled with DNA replication and controlled by FA proteins. We discuss here the recent discovery of new FA-associated proteins and the development of new tractable repair systems that have dramatically improved our understanding of crosslink repair. We focus also on how FA proteins protect against replication failure in the context of fragile sites and on the identification of reactive metabolites that account for the development of Fanconi anaemia symptoms
Guiding principles for the development and application of solid-phase phosphorus adsorbents for freshwater ecosystems
While a diverse array of phosphorus (P)-adsorbent materials is currently available for application to freshwater aquatic systems, selection of the most appropriate P-adsorbents remains problematic. In particular, there has to be a close correspondence between attributes of the P-adsorbent, its field performance, and the management goals for treatment. These management goals may vary from a rapid reduction in dissolved P to address seasonal enrichments from internal loading, targeting external fluxes due to anthropogenic sources, or long term inactivation of internal P inventories contained within bottom sediments. It also remains a challenge to develop new methods and materials that are ecologically benign and cost-effective. We draw on evidence in the literature and the authors’ personal experiences in the field, to summarise the attributes of a range of P-adsorbent materials. We offer 'guiding principles' to support practical use of existing materials and outline key development needs for new materials
- …