26 research outputs found

    Hypothalamic S1p/s1pr1 axis controls energy homeostasis

    Get PDF
    Sphingosine 1-phosphate receptor 1 (S1PR1) is a G-protein-coupled receptor for sphingosine-1-phosphate (S1P) that has a role in many physiological and pathophysiological processes. Here we show that the S1P/S1PR1 signalling pathway in hypothalamic neurons regulates energy homeostasis in rodents. We demonstrate that S1PR1 protein is highly enriched in hypothalamic POMC neurons of rats. Intracerebroventricular injections of the bioactive lipid, S1P, reduce food consumption and increase rat energy expenditure through persistent activation of STAT3 and the melanocortin system. Similarly, the selective disruption of hypothalamic S1PR1 increases food intake and reduces the respiratory exchange ratio. We further show that STAT3 controls S1PR1 expression in neurons via a positive feedback mechanism. Interestingly, several models of obesity and cancer anorexia display an imbalance of hypothalamic S1P/S1PR1/STAT3 axis, whereas pharmacological intervention ameliorates these phenotypes. Taken together, our data demonstrate that the neuronal S1P/S1PR1/STAT3 signalling axis plays a critical role in the control of energy homeostasis in rats.Sphingosine 1-phosphate receptor 1 (S1PR1) is a G-protein-coupled receptor for sphingosine-1-phosphate (S1P) that has a role in many physiological and pathophysiological processes. Here we show that the S1P/S1PR1 signalling pathway in hypothalamic neurons regulates energy homeostasis in rodents. We demonstrate that S1PR1 protein is highly enriched in hypothalamic POMC neurons of rats. Intracerebroventricular injections of the bioactive lipid, S1P, reduce food consumption and increase rat energy expenditure through persistent activation of STAT3 and the melanocortin system. Similarly, the selective disruption of hypothalamic S1PR1 increases food intake and reduces the respiratory exchange ratio. We further show that STAT3 controls S1PR1 expression in neurons via a positive feedback mechanism. Interestingly, several models of obesity and cancer anorexia display an imbalance of hypothalamic S1P/S1PR1/STAT3 axis, whereas pharmacological intervention ameliorates these phenotypes. Taken together, our data demonstrate that the neuronal S1P/S1PR1/STAT3 signalling axis plays a critical role in the control of energy homeostasis in rats5485

    Hypothalamic S1p/s1pr1 Axis Controls Energy Homeostasis

    Get PDF
    Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Sphingosine 1-phosphate receptor 1 (S1PR1) is a G-protein-coupled receptor for sphingosine-1-phosphate (S1P) that has a role in many physiological and pathophysiological processes. Here we show that the S1P/S1PR1 signalling pathway in hypothalamic neurons regulates energy homeostasis in rodents. We demonstrate that S1PR1 protein is highly enriched in hypothalamic POMC neurons of rats. Intracerebroventricular injections of the bioactive lipid, S1P, reduce food consumption and increase rat energy expenditure through persistent activation of STAT3 and the melanocortin system. Similarly, the selective disruption of hypothalamic S1PR1 increases food intake and reduces the respiratory exchange ratio. We further show that STAT3 controls S1PR1 expression in neurons via a positive feedback mechanism. Interestingly, several models of obesity and cancer anorexia display an imbalance of hypothalamic S1P/S1PR1/STAT3 axis, whereas pharmacological intervention ameliorates these phenotypes. Taken together, our data demonstrate that the neuronal S1P/S1PR1/STAT3 signalling axis plays a critical role in the control of energy homeostasis in rats.5Capes-12900-13-3; CAPES; Coordenação de Aperfeiçoamento de Pessoal de Nível SuperiorCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Schwartz, M.W., Woods, S.C., Porte, D., Jr., Seeley, R.J., Baskin, D.G., Central nervous system control of food intake (2000) Nature, 404, pp. 661-671Munzberg, H., Huo, L., Nillni, E.A., Hollenberg, A.N., Bjorbaek, C., Role of signal transducer and activator of transcription 3 in regulation of hypothalamic proopiomelanocortin gene expression by leptin (2003) Endocrinology, 144, pp. 2121-2131Myers, M.G., Cowley, M.A., Munzberg, H., Mechanisms of leptin action and leptin resistance (2008) Annu. Rev. Physiol., 70, pp. 537-556Janoschek, R., Gp130 signaling in proopiomelanocortin neurons mediates the acute anorectic response to centrally applied ciliary neurotrophic factor (2006) Proc. Natl Acad. Sci. USA, 103, pp. 10707-10712Johnen, H., Tumor-induced anorexia and weight loss are mediated by the TGF-beta superfamily cytokine MIC-1 (2007) Nat. Med., 13, pp. 1333-1340Ropelle, E.R., IL-6 and IL-10 anti-inflammatory activity links exercise to hypothalamic insulin and leptin sensitivity through IKKbeta and ER stress inhibition (2010) PLoS Biol., 8El-Haschimi, K., Pierroz, D.D., Hileman, S.M., Bjorbaek, C., Flier, J.S., Two defects contribute to hypothalamic leptin resistance in mice with diet-induced obesity (2000) J. Clin. Invest., 105, pp. 1827-1832Ernst, M.B., Enhanced Stat3 activation in POMC neurons provokes negative feedback inhibition of leptin and insulin signaling in obesity (2009) J. Neurosci., 29, pp. 11582-11593Gao, Q., Anorectic estrogen mimics leptin's effect on the rewiring of melanocortin cells and Stat3 signaling in obese animals (2007) Nat. Med., 13, pp. 89-94Ghilardi, N., Defective STAT signaling by the leptin receptor in diabetic mice (1996) Proc. Natl Acad. Sci. USA, 93, pp. 6231-6235Frias, M.A., James, R.W., Gerber-Wicht, C., Lang, U., Native and reconstituted HDL activate Stat3 in ventricular cardiomyocytes via ERK1/2: Role of sphingosine-1-phosphate (2009) Cardiovasc. Res., 82, pp. 313-323Gurgui, M., Broere, R., Kalff, J.C., Van Echten-Deckert, G., Dual action of sphingosine 1-phosphate in eliciting proinflammatory responses in primary cultured rat intestinal smooth muscle cells (2010) Cell Signal., 22, pp. 1727-1733Lee, H., STAT3-induced S1PR1 expression is crucial for persistent STAT3 activation in tumors (2010) Nat. Med., 16, pp. 1421-1428Liang, J., Sphingosine-1-phosphate links persistent STAT3 activation, chronic intestinal inflammation, and development of colitis-associated cancer (2013) Cancer Cell, 23, pp. 107-120Spiegel, S., Milstien, S., The outs and the ins of sphingosine-1-phosphate in immunity (2011) Nat. Rev. Immunol., 11, pp. 403-415Spiegel, S., Milstien, S., Functions of the multifaceted family of sphingosine kinases and some close relatives (2007) J. Biol. Chem., 282, pp. 2125-2129Loh, K.C., Sphingosine-1-phosphate enhances satellite cell activation in dystrophic muscles through a S1PR2/STAT3 signaling pathway (2012) PLoS One, 7Lopez, M., Hypothalamic fatty acid metabolism mediates the orexigenic action of ghrelin (2008) Cell. Metab., 7, pp. 389-399Oo, M.L., Engagement of S1P(1)-degradative mechanisms leads to vascular leak in mice (2011) J. Clin. Invest., 121, pp. 2290-2300Means, C.K., Brown, J.H., Sphingosine-1-phosphate receptor signalling in the heart (2009) Cardiovasc. Res., 82, pp. 193-200Schwartz, M.W., Leptin increases hypothalamic pro-opiomelanocortin mRNA expression in the rostral arcuate nucleus (1997) Diabetes, 46, pp. 2119-2123Cowley, M.A., Leptin activates anorexigenic POMC neurons through a neural network in the arcuate nucleus (2001) Nature, 411, pp. 480-484Bates, S.H., STAT3 signalling is required for leptin regulation of energy balance but not reproduction (2003) Nature, 421, pp. 856-859Mynard, V., Guignat, L., Devin-Leclerc, J., Bertagna, X., Catelli, M.G., Different mechanisms for leukemia inhibitory factor-dependent activation of two proopiomelanocortin promoter regions (2002) Endocrinology, 143, pp. 3916-3924Bousquet, C., Zatelli, M.C., Melmed, S., Direct regulation of pituitary proopiomelanocortin by STAT3 provides a novel mechanism for immunoneuroendocrine interfacing (2000) J. Clin. Invest., 106, pp. 1417-1425Bousquet, C., Melmed, S., Critical role for STAT3 in murine pituitary adrenocorticotropin hormone leukemia inhibitory factor signaling (1999) J. Biol. Chem., 274, pp. 10723-10730Andreux, P.A., Systems genetics of metabolism: The use of the BXD murine reference panel for multiscalar integration of traits (2012) Cell, 150, pp. 1287-1299Guissouma, H., Froidevaux, M.S., Hassani, Z., Demeneix, B.A., In vivo siRNA delivery to the mouse hypothalamus confirms distinct roles of TR beta isoforms in regulating TRH transcription (2006) Neurosci. Lett., 406, pp. 240-243Froidevaux, M.S., The co-chaperone XAP2 is required for activation of hypothalamic thyrotropin-releasing hormone transcription in vivo (2006) EMBO Rep., 7, pp. 1035-1039Nagahashi, M., Sphingosine-1-phosphate produced by sphingosine kinase 1 promotes breast cancer progression by stimulating angiogenesis and lymphangiogenesis (2012) Cancer Res., 72, pp. 726-735Brinkmann, V., Fingolimod (FTY720): Discovery and development of an oral drug to treat multiple sclerosis (2010) Nat. Rev. Drug Discov., 9, pp. 883-897Graler, M.H., Goetzl, E.J., The immunosuppressant FTY720 down-regulates sphingosine 1-phosphate G-protein-coupled receptors (2004) FASEB J., 18, pp. 551-553Guo, H., An activated protein C analog stimulates neuronal production by human neural progenitor cells via a PAR1-PAR3-S1PR1-Akt pathway (2013) J. Neurosci., 33, pp. 6181-6190Ishii, I., Fukushima, N., Ye, X., Chun, J., Lysophospholipid receptors: Signaling and biology (2004) Annu. Rev. Biochem., 73, pp. 321-354Walter, D.H., Sphingosine-1-phosphate stimulates the functional capacity of progenitor cells by activation of the CXCR4-dependent signaling pathway via the S1P3 receptor (2007) Arterioscler. Thromb. Vasc. Biol., 27, pp. 275-282Grossberg, A.J., Arcuate nucleus proopiomelanocortin neurons mediate the acute anorectic actions of leukemia inhibitory factor via gp130 (2010) Endocrinology, 151, pp. 606-616Febbraio, M.A., Gp130 receptor ligands as potential therapeutic targets for obesity (2007) J. Clin. Invest., 117, pp. 841-849Samad, F., Hester, K.D., Yang, G., Hannun, Y.A., Bielawski, J., Altered adipose and plasma sphingolipid metabolism in obesity: A potential mechanism for cardiovascular and metabolic risk (2006) Diabetes, 55, pp. 2579-2587Bence, K.K., Neuronal PTP1B regulates body weight, adiposity and leptin action (2006) Nat. Med., 12, pp. 917-924Chiarreotto-Ropelle, E.C., Acute exercise suppresses hypothalamic PTP1B protein level and improves insulin and leptin signaling in obese rats (2013) Am. J. Physiol. Endocrinol. Metab., 305, pp. E649-E659Picardi, P.K., Reduction of hypothalamic protein tyrosine phosphatase improves insulin and leptin resistance in diet-induced obese rats (2008) Endocrinology, 149, pp. 3870-3880Milanski, M., Saturated fatty acids produce an inflammatory response predominantly through the activation of TLR4 signaling in hypothalamus: Implications for the pathogenesis of obesity (2009) J. Neurosci., 29, pp. 359-370Purkayastha, S., Zhang, G., Cai, D., Uncoupling the mechanisms of obesity and hypertension by targeting hypothalamic IKK-beta and NF-kappaB (2011) Nat. Med., 17, pp. 883-887Zhang, X., Hypothalamic IKKbeta/NF-kappaB and ER stress link overnutrition to energy imbalance and obesity (2008) Cell, 135, pp. 61-73Laviano, A., Meguid, M.M., Rossi-Fanelli, F., Cancer anorexia: Clinical implications, pathogenesis, and therapeutic strategies (2003) Lancet Oncol., 4, pp. 686-694Tisdale, M.J., Biology of cachexia (1997) J. Natl Cancer Inst., 89, pp. 1763-1773Pchejetski, D., Circulating sphingosine-1-phosphate inversely correlates with chemotherapy-induced weight gain during early breast cancer (2010) Breast Cancer Res. Treat., 124, pp. 543-549Ponnusamy, S., Communication between host organism and cancer cells is transduced by systemic sphingosine kinase 1/sphingosine 1-phosphate signalling to regulate tumour metastasis (2012) EMBO Mol. Med., 4, pp. 761-775Mellon, P.L., Immortalization of hypothalamic GnRH neurons by genetically targeted tumorigenesis (1990) Neuron, 5, pp. 1-1

    Brain Regulation Of Food Intake And Expenditure Energy: Molecular Action Of Insulin, Leptin And Physical Exercise [regulación Central De La Ingestión Alimentaria Y El Gasto Energético: Acciones Moleculares De La Insulina, La Leptina Y El Ejercicio Físico]

    No full text
    Introduction. Overweight and obesity present significant public health concerns because of the link with numerous chronic health conditions. During the last ten years, since the discovery of leptin, great advances were obtained in the characterization oh the hypothalamic mechanisms involved in the control of food intake and thermogenesis. Development. This review will present some the most recent findings in this field. It will be focused on the actions of leptin and insulin in the hypothalamus and will explore the hypothesis that hypothalamic resistance to the action of these hormones may play a key role in the development of obesity. Conclusions. The physical activity is an important component on long-term weight control. The exercise markedly increased phosphorylation activity of several proteins involved in leptin and insulin signal transduction in the hypothalamus. Recently our laboratory showed that physical activity increase in sensitivity to leptin- and insulin-induced anorexia after enhances interleukin-6 production. These findings provide support for the hypothesis that the appetite-suppressive actions of exercise may be mediated by the hypothalamus. © 2007, Revista de Neurología.4511672682Booth, F.W., Chakravarthy, M.V., Spangenburg, E.E., Exercise and gene expression: Physiological regulation of the human genome through activity (2002) J Physiol, 543, pp. 399-411Schwartz, M.W., Woods, S.C., Porte Jr, D., Seeley, R.J., Baskin, D.G., Central nervous system control of food intake (2000) Nature, 404, pp. 661-671Flier, J.S., Obesity wars: Molecular progress confronts an expanding epidemic (2004) Cell, 116, pp. 337-350Stellar, E., The physiology of motivation (1994) Physiol Rev, 101, pp. 301-311Broberger, C., Brain regulation of food intake and appetite: Molecules and networks (2005) J Intern Med, 258, pp. 301-327Wynne, K., Stanley, S., McGowan, B., Bloom, S., Appetite control (2005) J Endocrinol, 184, pp. 291-318Broadwell, R.D., Brightman, M.W., Entry peroxidase into neurons of the central and peripheral nervous systems from extracerebral and cerebral blood (1976) J Comp Neurol, 166, pp. 257-283Niswender, K.D., Baskin, D.G., Schwartz, M.W., Insulin and its evolving partnership with leptin in the hypothalamic control of energy homeostasis (2004) Trends Endocrinol Metab, 15, pp. 362-368Baskin, D.G., Lattemann, D.F., Seeley, R.J., Woods, S.C., Porte Jr, D., Schwartz, M.W., Insulin and leptin: Dual adiposity signals to the brain for the regulation of food intake and body weight (1999) Brain Res, 848, pp. 114-123Friedman, J.M., Halaas, J.L., Leptin and the regulation of body weight in mammals (1998) Nature, 395, pp. 763-770Sinha, M.K., Sturis, J., Ohannesian, J., Magosin, S., Stephens, T., Heiman, M., Ultradian oscillations of leptin secretion in humans (1996) Biochem Biophys Res Commun, 228, pp. 733-738Maurigeri, D., Bonanno, M.R., Speciale, S., Santangelo, A., Lentinia, A., Russo, M.S., The leptin, a new hormone of adipose tissue: Clinical findings and perspectives in geriatrics (2002) Arch Gerontol Geriatr, 34, pp. 47-54Tartaglia, L.A., The leptin receptor (1997) J Biol Chem, 272, pp. 6093-6096Chua Jr, S.C., Chung, W.K., Wu-Peng, X.S., Zhang, Y., Liu, S.M., Tartaglia, L., Phenotypes of mouse diabetes and rat fatty due mutations in the OB (leptin) receptor (1996) Science, 271, pp. 994-996Lee, G.H., Proenca, R., Montez, J.M., Carroll, K.M., Darvishzadeh, J.G., Lee, J.I., Abnormal splicing of the leptin receptor in diabetic mice (1996) Nature, 379, pp. 632-635Wang, M.Y., Zhou, Y.T., Newgard, C.B., Unger, R.H., A novel leptin receptor isoform in rat (1998) FEBS Lett, 392, pp. 87-90Fruhbeck, G., Intracellular signaling pathways activated by leptin (2006) Biochem J, 393 (PART 1), pp. 7-20Bjorbaek, C., Uotani, S., Da Silva, B., Flier, J.S., Divergent signaling capacities of the long and short isoforms of the leptin receptor (1997) J Biol Chem, 272, pp. 32686-32695Bjorbaek, C., Kahn, B.B., Leptin signaling in the central nervous system and the periphery (2004) Rec Prog Horm Res, 59, pp. 305-331Hileman, S.M., Pierroz, D.D., Masuzaki, H., Bjorbaek, C., El-Haschimi, K., Banks, W.A., Characterization of short isoforms of the leptin receptor in rat cerebral microvessels and of brain uptake of leptin in mouse models of obesity (2002) Endocrinology, 143, pp. 775-783Löllmann, B., Gruninger, S., Stricker-Krongrad, A., Chiesi, M., Detection and quantification of the leptin receptor splice variants Ob-Ra, b, and e in different mouse tissues (1997) Biochem Biophys Res Commun, 238, pp. 648-652Lammert, A., Kiess, W., Bottner, A., Glasow, A., Kratzsch, J., Soluble leptin receptor represents the main leptin binding activity in human blood (2001) Biochem Biophys Res Commun, 283, pp. 982-988Chan, J.L., Bluher, S., Yiannakouris, N., Suchard, M.A., Kratzsch, J., Mantzoros, C.S., Regulation of circulating soluble leptin receptor levels by gender, adiposity, sex steroids, and leptin: Observational and interventional studies in humans (2002) Diabetes, 51, pp. 2105-2112Zabeau, L., Lavens, D., Peelman, F., Eyckerman, S., Vandekerckhove, J., Tavernier, J., The ins and outs of leptin receptor activation (2003) FEBS Lett, 546, pp. 45-50Munzberg, H., Myers, M.G., Molecular and anatomical determinants of central leptin resistance (2005) Nat Neurosci, 8, pp. 566-570Kelerrer, M., Koch, M., Metzinger, E., Mushack, J., Capp, E., Haring, H.U., Leptin activates PI3 kinase in C2C12 myotubes via janus kinase-2 (JAK-2) and insulin receptor substrate-2 (IRS-2) dependent pathways (1997) Diabetologia, 40, pp. 1358-1362Xu, A.W., Kaelin, C.B., Takeda, K., Akira, S., Schwartz, M.W., Barsh, G.S., PI3K integrates the action of insulin and leptin on hypothalamic neurons (2005) J Clin Invest, 115, pp. 951-958Bjorbaek, C., Buchholz, R.M., Davis, S.M., Bates, S.H., Pierroz, D.D., Divergent roles of SHP-2 in ERK activation by leptin receptors (2001) J Biol Chem, 276, pp. 4747-4755Carvalheira, J.B., Siloto, R.M., Ignacchitti, I., Brenelli, S.L., Carvalho, C.R., Insulin modulates leptin-induced STAT3 activation in rat hypothalamus (2001) FEBS Lett, 500, pp. 119-124Carvalheira, J.B., Ribeiro, E.B., Folli, F., Velloso, L.A., Saad, M.J., Interaction between leptin and insulin signaling pathways differentially affects JAK-STAT and PI3-kinase-mediated signaling in rat liver (2003) Biol Chem, 384, pp. 151-159Carvalheira, J.B., Torsoni, M.A., Ueno, M., Amaral, M.E., Araujo, E.P., Velloso, L.A., Cross-talk between the insulin and leptin signaling systems in rat hypothalamus (2005) Obes Res, 13, pp. 48-57Kahn, B.B., Flier, J.S., Obesity and insulin resistance (2000) J Clin Invest, 106, pp. 473-481Woods, S.C., Lotter, E.C., McKay, L.D., Porte Jr., D., Chronic intracerebroventricular infusion of insulin reduces food intake and body weight of baboons (1979) Nature, 282, pp. 503-505Kasuga, M., Karisson, F.A., Kahn, C.R., Insulin stimulates the phosphorilation of the 95,000-dalton subunit of its own receptor (1982) Science, 215, pp. 185-187Saltiel, A.R., Kahn, C.R., Insulin signaling and the regulation of glucose and lipid metabolism (2001) Nature, 414, pp. 799-806White, M.F., The insulin signaling system and the IRS proteins (1997) Diabetologia, 40, pp. S2-17Torsoni, M.A., Carvalheira, J.B., Pereira-Da Silva, M., De Carvalho-Filho, M.A., Saad, M.J., Velloso, L.A., Molecular and functional resistance to insulin in hypothalamus of rats exposed to cold (2003) Am J Physiol Endocrinol Metab, 285, pp. E216-E223Carvalheira, J.B., Ribeiro, E.B., Araujo, E.P., Guimaraes, R.B., Telles, M.M., Selective impairment of insulin signaling in the hypothalamus of obese Zucker rats (2003) Diabetologia, 46, pp. 1629-1640Plum, L., Schubert, M., Bruning, J.C., The role of insulin receptor signaling in the brain (2005) Trends Endocrinol Metab, 16, pp. 59-65Saad, M.J., Carvalho, C.R., Thirone, A.C., Velloso, L.A., Insulin reduces tyrosine phosphorylation of JAK2 in insulin-sensitive tissues of the intact rat (1996) J Biol Chem, 271, pp. 22100-22104Sivitz, W.I., Walsh, S.A., Morgan, D.A., Thomas, M.J., Haynes, W.G., Effects of leptin on insulin sensitivity in normal rats (1997) Endocrinology, 138, pp. 3395-3401Kim, M.S., Pak, Y.K., Jang, P.G., Namkoong, C., Choi, Y.S., Won, J.C., Role of hypothalamic Foxo1 in the regulation of food intake and energy homeostasis (2006) Nat Neurosci, 9, pp. 1-6Puigserver, P., Rhee, J., Donovan, J., Walkey, C.J., Yoon, J.C., Oriente, F., Insulin-regulated hepatic gluconeogenesis through FOXO1-PGC-1alpha interaction (2003) Nature, 423, pp. 550-555Kitamura, T., Nakae, J., Kitamura, Y., Kido, Y., Biggs III, W.H., Wright, C.V., The forkhead transcription factor Foxo1 links insulin signaling to Pdx1 regulation of pancreatic beta cell growth (2002) J Clin Invest, 110, pp. 1839-1847Folli, F., Bonfanti, L., Renard, E., Kahn, C.R., Merighi, A., Insulin receptor substrate-1 (IRS1) distribution in the rat central nervous system (1994) J Neurosci, 14, pp. 6412-6422De, L.A., Fernandes, M.L., Saad, M.J., Velloso, L.A., Insulin induces tyrosine phosphorylation of the insulin receptor and SHC, and SHC/GRB2 association in cerebellum but not in forebrain cortex of rats (1999) Brain Res, 826, pp. 74-82Pereira-Da Silva, M., Torsoni, M.A., Nourani, H.V., Augusto, V.D., Souza, C.T., Gasparetti, A.L., Hypothalamic melanin-concentrating hormone is induced by cold exposure and participates in the control of energy expenditure in rats (2003) Endocrinology, 144, pp. 4831-4840Michel, C., Cabanac, M., Effects of dexamethasone on the body weight set point of rats (1999) Physiol Behav, 68, pp. 145-150Zakrzewska, K.E., Cusin, I., Stricker-Krongrad, A., Boss, O., Ricquier, D., Jeanrenaud, B., Induction of obesity and hyperleptinemia by central glucocorticoid infusion in the rat (1999) Diabetes, 48, pp. 365-370Ponsalle, P., Srivistava, L.S., Uht, R.M., White, J.D., Glucocorticoids are required for food-deprivation-induced increases in hypothalamic neuropeptide Y expression (1993) Neuroendocrinology, 4, pp. 585-591Hanson, E.S., Levin, N., Dallman, M.F., Elevated corticosterone is not required for the rapid induction of neuropeptide Y gene expression by an overnight fast (1997) Endocrinology, 138, pp. 1041-1047Bruning, J.C., Gautam, D., Burks, D.J., Gillete, J., Schubert, M., Orban, P.C., Role of brain insulin receptor in control of body weight and reproduction (2000) Science, 289, pp. 2122-2125Araki, E., Lipes, M.A., Patti, M.E., Bruning, J.C., Haag, B., Johnson, R.S., Alternative pathway of insulin signalling in mice with targeted disruption of the IRS-1 gene (1994) Nature, 372, pp. 186-190Withers, D.J., Gutiérrez, J.S., Towery, H., Burks, D.J., Ren, J.M., Previs, S., Disruption of IRS-2 causes type 2 diabetes in mice (1998) Nature, 391, pp. 900-904Friedman, J.M., Halaas, J.L., Leptin and the regulation of body weight in mammals (1998) Nature, 395, pp. 763-770Sandoval, D.A., Davis, S.N., Leptin: Metabolic control and regulation (2003) J Diabetes Complications, 2, pp. 108-113Wilding, J.P., Leptin and the control of obesity (2001) Curr Opin Pharmacol, 6, pp. 656-661Considine, R.V., Sinha, M.K., Heiman, M.L., Kriauciunas, A., Stephens, T.W., Nyce, M.R., Serum immunoreactive-leptin concentrations in normal-weight and obese humans (1996) N Engl J Med, 334, pp. 292-295Farooqi, I.S., Keogh, J.M., Kamath, S., Jones, S., Gibson, W.T., Trussell, R., Partial leptin deficiency and human adiposity (2001) Nature, 414, pp. 34-35Montague, C.T., Farooqi, I.S., Whitehead, J.P., Soos, M.A., Rau, H., Wareham, N.J., Congenital leptin deficiency is associated with severe earlyonset obesity in humans (1997) Nature, 387, pp. 903-908Jakicic, J.M., Otto, A.M., Physical activity considerations for the treatment and prevention of obesity (2005) Am J Clin Nutr, 82, pp. S226-S229Kretschmer, B.D., Schelling, P., Norbert, B., Liebscher, C., Treutel, S., Kruger, N., Modulatory role of food, feeding regime and physical exercise on body weight and insulin resistance (2005) Life Sci, 76, pp. 1553-1573Long, S.J., Hart, K., Morgan, M., The ability of habitual exercise to influence appetite and food intake in response to high- and low-energy preloads in man (2002) Br J Nutr, 87, pp. 517-523Melzer, K., Kayser, B., Saris, W.H.M., Pichard, C., Effects of physical activity on food intake (2005) Clin Nutr, 8, pp. 2-11Donnely, J.E., Smith, B., Jacobsen, D.J., Kirk, E., Du Bose, K., Hyder, M., The role of exercise for weight loss and maintenance (2004) Bets Pract Res Clin Gastroenterol, 18, pp. 1009-1029Luciano, E., Carneiro, E.M., Carvalho, C.R., Carvalheira, J.B., Peres, S.B., Reis, M.A., Endurance training improves responsiveness to insulin and modulates insulin signal transduction through the phosphatidylinositol 3-kinase/Akt-1 pathway (2002) Eur J Endocrinol, 147, pp. 149-157Kennedy, J.W., Hirshman, M.F., Gervino, E.V., Ocel, J.V., Forse, R.A., Hoenig, S.J., Acute exercise induces GLUT4 translocation in skeletal muscle of normal human subjects and subjects with type 2 diabetes (1999) Diabetes, 48, pp. 1192-1197Knowler, W.C., Barrett-Connor, E., Fowler, S.E., Hamman, R.F., Lachin, J.M., Walker, E.A., Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin (2002) N Engl J Med, 346, pp. 393-403Goodyear, L.J., Kahn, B.B., Exercise, glucose transport, and insulin sensitivity (1998) Annu Rev Med, 49, pp. 235-261Henriksen, E.J., Invited review: Effects of acute exercise and exercise training on insulin resistance (2002) J Appl Physiol, 93, pp. 788-796Howlett, K.F., Sakamoto, K., Hirshman, M.F., Aschenbach, W.G., Dow, M., White, M.F., Insulin signaling after exercise in insulin receptor substrate-2-deficient mice (2002) Diabetes, 51, pp. 479-483Wojtaszewski, J.F., Higaki, Y., Hirshman, M.F., Michael, M.D., Dufresne, S.D., Kahn, C.R., Exercise modulates postreceptor insulin signaling and glucose transport in muscle-specific insulin receptor knockout mice (1999) J Clin Invest, 104, pp. 1257-1264Miller, W.C., Koceja, D.M., Hamilton, E.J.A., Meta-analysis of the past 25 years of weight loss research using diet, exercise or diet plus exercise intervention (1997) Int J Obes Relat Metab Disord, 21, pp. 941-947Pronk, N.P., Wing, R.R., Hamilton, E.J., Physical activity and long-term maintenance of weight loss (1994) Obes Res, 2, pp. 587-591Bovetto, S., Richard, D., Lesion of central nucleus of amygdala promotes fat gain without preventing effect of exercise on energy balance (1995) Am J Physiol, 269, pp. R781-R786Rivest, S., Richard, D., Involvement of corticotropin-releasing factor in the anorexia induced by exercise (1990) Brain Res Bull, 25, pp. 169-172Kotz, C.M., Integration of feeding and spontaneous physical activity: Role for orexin (2006) Physiol Behav, 88, pp. 294-301Pauli, J.R., Gomes, R.J., Luciano, E., Eje hipotálamo-pituitario: Efectos del entrenamiento físico en ratas Wistar con administración de dexametasona (2006) Rev Neurol, 42, pp. 325-331Dishman, R.K., Brain monoamines, exercise, and behavioral stress: Animal models (1997) Med Sci Sports Exerc, 29, pp. 63-74Neeper, S.A., Gómez-Pinilla, F., Choi, J., Cotman, C.W., Physical activity increases mRNA for brain-derived neurotrophic factor and nerve growth factor in rat brain (1996) Brain Res, 726, pp. 49-56Leibowitz, S.F., Roossin, P., Rosenn, M., Chronic norepinephrine injection into the hypothalamic paraventricular nucleus produces hyperphagia and increased body weight in the rat (1984) Pharmacol Biochem Behav, 21, pp. 801-808Waldbillig, R.J., Bartness, T.J., Stanley, B.G., Increased food intake, body weight, and adiposity in rats after regional neurochemical depletion of serotonin (1981) J Comp Physiol Psychol, 95, pp. 391-405Lyons, W.E., Mamounas, L.A., Ricaurte, G.A., Coppola, V., Reid, S.W., Bora, S.H., Brain-derived neurotrophic factor-deficient mice develop aggressiveness and hyperphagia in conjunction with brain serotonergic abnormalities (1999) Proc Natl Acad Sci U S A, 96, pp. 15239-15244Bi, S., Scott, K.A., Hyun, J., Ladenheim, E.E., Moran, T.H., Running wheel activity prevents hyperphagia and obesity in Otsuka long-evans Tokushima fatty rats: Role of hypothalamic signaling (2005) Endocrinology, 146, pp. 1676-1685Shin, M.S., Kim, H., Chang, H.K., Lee, T.H., Jang, M.H., Shin, M.C., Treadmill exercise suppresses diabetes-induced increment of neuropeptide Y expression in the hypothalamus of rats (2003) Neurosci Lett, 346, pp. 157-160Flores, M.B., Fernandes, M.F., Ropelle, E.R., Faria, M.C., Ueno, M., Velloso, L.A., Exercise improves insulin and leptin sensitivity in hypothalamus of Wistar rats (2006) Diabetes, 55, pp. 2554-2561Pedersen, B.K., Steenberg, A., Fischer, C., Keller, C., Keller, P., Plomgaard, P., The metabolic role of IL-6 produced during exercise: Is IL-6 an exercise factor? (2004) Proc Nutr Soc, 63, pp. 263-267Cota, D., Proulx, K., Smith, K.A., Kozma, S.C., Thomas, G., Woods, S.C., Hypothalamic mTOR signaling regulates food intake (2006) Science, 312, pp. 927-930Febbraio MA. gp130 receptor ligands as potential therapeutic targets for obesity. J Clin Invest 2007117: 841-9Janoschek, R., Plum, L., Koch, L., Munzberg, H., Diano, S., Bruning, J.C., gp130 signaling in proopiomelanocortin neurons mediates the acute anorectic response to centrally applied ciliary neurotrophic factor (2006) Proc Natl Acad Sci U S A, 103, pp. 10707-10712Ernst, M., Jenkins, B.J., Acquiring signaling specificity from the receptor gp130 (2004) Trends Genet, 20, pp. 23-32Cohen, B., Novick, D., Rubinstein, M., Modulation of insulin activities by leptin (1996) Science, 274, pp. 1185-1188Boulton, T.G., Stahl, N., Yancopoulos, G.D., Ciliary neurotrophic factor/leukemia inhibitory factor/interleukin 6/oncostatin M family of cytokines induces tyrosine phosphorylation of a common set of proteins overlapping those induced by other cytokines and growth factors (1994) J Biol Chem, 269, pp. 11648-1165

    Effects Of Physical Exercise In The Ampkα Expression And Activity In High-fat Diet Induced Obese Rats [efeitos Do Exercício Físico Na Expressão E Atividade Da Ampkα Em Ratos Obesos Induzidos Por Dieta Rica Em Gordura]

    No full text
    Introduction: High-fat diet is a special risk factor in the development of insulin resistance and type 2 diabetes. Objective: To investigate the effects of physical exercise on the AMPK expression and activity in high-fat diet induced obese rats. Methods: Wistar rats were randomly divided into four groups and received either a rat maintenance diet (control group) or an isocaloric high-fat diet (HFD) (sedentary groups and exercised groups) for four months. Two different exercise protocols were utilized: Acute or chronic swimming exercise. Insulin tolerance test was performed to estimate whole-body insulin sensitivity. AMPKα and GLUT4 as well as pAMPKα and pACC of rats' skeletal muscle levels were determined using Western blot. Results: Insulin tolerance test revealed a significantly impaired insulin action after HFDt feeding, indicating high-fat induced insulin resistance when compared to control group. Four months of HFD treatment induced to significant decrease of AMPKα (2.2-fold) and GLUT4 (2.5-fold) protein contents and also of p-AMPKα (2.4-fold) and p-ACC (2.5-fold) in sedentary rats' skeletal muscle when compared with the control group. Both exercise protocols resulted in increase of AMPKα and ACC phosphorylation and increase in insulin sensitivity, while chronic physical exercise alone provoked increase in these proteins expression (p < 0.05). Conclusion: High-fat feeding impairs AMPKα activity, while AMPKα activation by physical exercise improves insulin resistance, thus indicating that obese rats normally have the AMPK pathway preserved.15298103Pauli, J.R., Ropelle, E.R., Cintra, D.E., Carvalho-Filho, M.A., Moraes, J.C., de Souza, C.T., Acute physical exercise reverses S-nitrosation of the insulin receptor, insulin receptor substrate 1 and protein kinaseB/Akt in diet-induced obese Wistar rats (2008) J Physiol, 586 (2), pp. 659-71Cintra, D.E., Pauli, J.R., Araújo, E.P., Moraes, J.C., de Souza, C.T., Milanski, M., Interleukin-10 is a protective factor against diet-induced insulin resistance in liver (2008) J Hepatol, 48 (4), pp. 628-37Thyfault, J.P., Cree, M.G., Zheng, D., Zwetsloot, J.J., Tapscott, E.B., Koves, T.R., Contraction of insulin-resistant muscle normalizes insulin action in association with increased mitochondrial activity and fatty acid catabolism (2007) Am J Physiol Cell Physiol, 292 (2), pp. C729-39Dobbins, R.L., Szczepaniak, L.S., Bentley, B., Esser, V., Myhill, J., McGarry, J.D., Prolonged inhibition of muscle carnitine palmitoyltransferase-1 promotes intramyocellular lipid accumulation and insulin resistance in rats (2001) Diabetes, 50 (1), pp. 123-30Abu-Elheiga, L., Oh, W., Kordari, P., Wakil, S.J., Acetyl-CoA carboxylase 2 mutant mice are protected against obesity and diabetes induced by high-fat/high-carbohydrate diets (2003) Proc Natl Acad Sci U S A, 100 (18), pp. 10207-12Perdomo, G., Commerford, S.R., Richard, A.M., Adams, S.H., Corkey, B.E., O'Doherty, R.M., Increased beta-oxidation in muscle cells enhances insulin-stimulated glucose metabolism and protects against fatty acid-induced insulin resistance despite intramyocellular lipid accumulation (2004) J Biol Chem, 279 (26), pp. 27177-86Oh, W., Abu-Elheiga, L., Kordari, P., Gu, Z., Shaikenov, T., Chirala, S.S., Glucose and fat metabolism in adipose tissue of acetyl-CoA carboxylase-2 knockout mice (2005) Proc Natl Acad Sci U S A, 102 (5), pp. 1384-9Kim, C.H., Kim, M.S., Youn, J.Y., Park, H.S., Song, H.S., Song, K.H., Lipolysis in skeletal muscle is decreased in high-fat-fed rats (2003) Metabolism, 52 (12), pp. 1586-92Storlien, L.H., Jenkins, A.B., Chisholm, D.J., Pascoe, W.S., Khouri, S., Kreagen, E.W., Influence of dietary fat composition on development of insulin resistance in rats. Relationship to muscle triglyceride and and omega-3 fatty acids in muscle phospholipid (1991) Diabetes, 40 (2), pp. 280-9Hardie, D.G., Carling, D., The AMP-activated protein kinase - fuel gauge of the mammalian cell? (1997) Eur J Biochem, 246 (2), pp. 259-73. , ReviewHardie, D.G., Scott, J.W., Pan, D.A., Hudson, E.R., Management of cellular energy by the AMP-activated protein kinase system (2003) FEBS Lett, 546 (1), pp. 113-20. , ReviewAi, H., Ihlemann, J., Hellsten, Y., Lauritzen, H.P., Hardie, D.G., Galbo, H., Effect of fiber type and nutritional state on AICAR- and contraction-stimulated glucose transport in rat muscle (2002) Am J Physiol Endocrinol Metab, 282 (6), pp. E1291-300Vavvas, D., Apazidis, A., Saha, A.K., Gamble, J., Patel, A., Kemp, B.E., Contraction-induced changes in acetyl-CoA carboxylase and 5'-AMP-activated kinase in skeletal muscle (1997) J Biol Chem, 272 (20), pp. 13255-61Rutter, G.A., da Silva Xavier, G., Leclerc, I., Roles of 5'-AMP-activated protein kinase (AMPK) in mammalian glucose homeostasis (2003) Biochem J, 375 (PART 1), pp. 1-16. , ReviewSavage, D.B., Choi, C.S., Samuel, V.T., Liu, Z.X., Zhang, D., Wang, A., Reversal of diet-induced hepatic steatosis and hepatic insulin resistance by antisense oligonucleotide inhibitors of acetyl-CoA carboxylases 1 and 2 (2006) J Clin Invest, 116 (3), pp. 817-24Zhou, G., Myers, R., Li, Y., Chen, Y., Shen, X., Fenyk-Melody, J., Role of AMP-activated protein kinase in mechanism of metformin action (2001) J Clin Invest, 108 (8), pp. 1167-74Musi, N., Fujii, N., Hirshman, M.F., Ekberg, I., Fröberg, O., Ljungqvist, O., AMP-activated protein kinase (AMPK) is activated in muscle of subjects with type 2 diabetes during exercise (2001) Diabetes, 50 (5), pp. 921-7de Lange, P., Moreno, M., Silvestri, E., Lombardi, A., Goglia, F., Lanni, A., Fuel economy in food-deprived skeletal muscle: Signaling pathways and regulatory mechanisms (2007) FASEB J, 21 (13), pp. 3431-41. , ReviewJessen, N., Pold, R., Buhl, E.S., Jensen, L.S., Schmitz, O., Lund, S., Effects of AICAR and exercise on insulin-stimulated glucose uptake, signaling, and GLUT-4 content in rat muscles (2003) J Appl Physiol, 94 (4), pp. 1373-9Ropelle, E.R., Pauli, J.R., Prada, P.O., de Souza, C.T., Picardi, P.K., Faria, M.C., Reversal of diet-induced insulin resistance with a single bout of exercise in the rat: The role of PTP1B and IRS-1 serine phosphorylation (2006) J Physiol, 577 (PART 3), pp. 997-1007Luciano, E., Carneiro, E.M., Carvalho, C.R., Carvalheira, J.B., Peres, S.B., Reis, M.A., Endurance training improves responsiveness to insulin and modulates insulin signal transduction through the phosphatidylinositol 3- kinase/Akt-1 pathway (2002) Eur J Endocrinol, 147 (1), pp. 149-57Bonora, E., Moghetti, P., Zancanaro, C., Cigolini, M., Querena, M., Cacciatori, V., Estimates of in vivo insulin action in man: Comparison of insulin tolerance tests with euglycemic and hyperglycemic glucose clamp studies (1989) J Clin Endocrinol Metab, 68 (2), pp. 374-8Bradford, M.M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding (1976) Anal Biochem, 72, pp. 248-54Laemmli, U.K., Cleavage of structural proteins during the assembly of the head of bacteriophage T4 (1970) Nature, 227 (5259), pp. 680-5Saad, M.J., Maeda, L., Brenelli, S.L., Carvalho, C.R., Paiva, R.S., Velloso, L.A., Defects in insulin signal transduction in liver and muscle of pregnant rats (1997) Diabetologia, 40 (2), pp. 179-86Boden, G., Role of fatty acids in the pathogenesis of insulin resistance and NIDDM (1997) Diabetes, 46 (1), pp. 3-10. , ReviewHunnicutt, J.W., Hardy, R.W., Williford, J., McDonald, J.M., Saturated fatty acid-induced insulin resistance in rat adipocytes (1994) Diabetes, 43 (4), pp. 540-5Prada, P.O., Pauli, J.R., Ropelle, E.R., Zecchin, H.G., Carvalheira, J.B., Velloso, L.A., Selective modulation of the CAP/Cbl pathway in the adipose tissue of high fat diet treated rats (2006) FEBS Lett, 580 (20), pp. 4889-94McGarry, J.D., Banting lecture 2001: Dysregulation of fatty acid metabolism in the etiology of type 2 diabetes (2002) Diabetes, 51 (1), pp. 7-18Astrup, A., Buemann, B., Christensen, N.J., Toubro, S., Failure to increase lipid oxidation in response to increasing dietary fat content in formerly obese women (1994) Am J Physiol, 266 (4 PART 1), pp. E592-9Phillips, D.I., Caddy, S., Ilic, V., Fielding, B.A., Frayn, K.N., Borthwick, A.C., Intramuscular triglyceride and muscle insulin sensitivity: Evidence for a relationship in nondiabetic subjects (1996) Metabolism, 45 (8), pp. 947-50Oakes, N.D., Cooney, G.J., Camilleri, S., Chisholm, D.J., Kraegen, E.W., Mechanisms of liver and muscle insulin resistance induced by chronic high-fat feeding (1997) Diabetes, 46 (11), pp. 1768-74Winder, W.W., Holmes, B.F., Rubink, D.S., Jensen, E.B., Chen, M., Holloszy, J.O., Activation of AMP-activated protein kinase increases mitochondrial enzymes in skeletal muscle (2000) J Appl Physiol, 88 (6), pp. 2219-26Terada, S., Goto, M., Kato, M., Kawanaka, K., Shimokawa, T., Tabata, I., Effects of low-intensity prolonged exercise on PGC-1 mRNA expression in rat epitrochlearis muscle (2002) Biochem Biophys Res Commun, 296 (2), pp. 350-4Hojlund, K., Mustard, K.J., Staehr, P., Hardie, D.G., Beck-Nielsen, H., Richter, E.A., AMPK activity and isoform protein expression are similar in muscle of obese subjects with and without type 2 diabetes (2004) Am J Physiol Endocrinol Metab, 286 (2), pp. E239-44Koistinen, H.A., Galuska, D., Chibalin, A.V., Yang, J., Zierath, J.R., Holman, G.D., 5-amino-imidazole carboxamide riboside increases glucose transport and cell-surface GLUT4 content in skeletal muscle from subjects with type 2 diabetes (2003) Diabetes, 52 (5), pp. 1066-72Musi, N., Fujii, N., Hirshman, M.F., Ekberg, I., Fröberg, S., Ljungqvist, O., AMP-activated protein kinase (AMPK) is activated in muscle of subjects with type 2 diabetes during exercise (2001) Diabetes, 50 (5), pp. 921-7Sriwijitkamol, A., Ivy, J.L., Christ-Roberts, C., DeFronzo, R.A., Mandarino, L.J., Musi, N., LKB1-AMPK signaling in muscle from obese insulin-resistant Zucker rats and effects of training (2006) Am J Physiol Endocrinol Metab, 290 (5), pp. E925-32Zheng, D., MacLean, P.S., Pohnert, S.C., Knight, J.B., Olson, A.L., Winder, W.W., Regulation of muscle GLUT-4 transcription by AMP-activated protein kinase (2001) J Appl Physiol, 91 (3), pp. 1073-83Holmes, B.F., Sparling, D.P., Olson, A.L., Winder, W.W., Dohm, G.L., Regulation of muscle GLUT4 enhancer factor and myocyte enhancer factor 2 by AMP-activated protein kinase (2005) Am J Physiol Endocrinol Metab, 289 (6), pp. E1071-

    The Role Of Neuronal Ampk As A Mediator Of Nutritional Regulation Of Food Intake And Energy Homeostasis

    No full text
    Hypothalamic 5′-adenosine monophosphate-activated protein kinase (AMPK) senses intracellular metabolic stress, i.e., an increase in the cellular AMP:ATP ratio, and integrates diverse hormonal and nutritional signals to restore energy balance. Recent evidence suggests that different nutrients can modulate AMPK activity in the hypothalamus, thereby controlling weight gain through a leptin-independent mechanism. Understanding the mechanisms by which nutrients control hypothalamic AMPK activity is crucial to the development of effective nutritional interventions for the treatment of food intake-related disorders, such as anorexia and obesity. This article highlights the current evidence for the intricate relationship between nutrients and hypothalamic AMPK activity. © 2013 Elsevier Inc.622171178Flegal, K.M., Graubard, B.I., Williamson, D.F., Gail, M.H., Excess deaths associated with underweight, overweight, and obesity (2005) Journal of the American Medical Association, 293 (15), pp. 1861-1867. , DOI 10.1001/jama.293.15.1861Fearon, K., Strasser, F., Anker, S.D., Definition and classification of cancer cachexia: An international consensus (2011) Lancet Oncol, 12, pp. 489-495Pauling, L., Evolution and the need for ascorbic acid (1970) Proc Natl Acad Sci U S A, 67, pp. 1643-1648Cameron, E., Pauling, L., Ascorbic acid and the glycosaminoglycans. An orthomolecular approach to cancer and other diseases (1973) Oncology, 27, pp. 181-192Pauling, L., Alcantara, E.N., Speckmann, E.W., Diet, nutrition, and cancer (1977) American Journal of Clinical Nutrition, 30 (5), pp. 661-663A critique of low-carbohydrate ketogenic weight reduction regimens. A review of Dr. Atkins' diet revolution (1973) JAMA, 224, pp. 1415-1419Gardner, C.D., Kiazand, A., Alhassan, S., Kim, S., Stafford, R.S., Balise, R.R., Kraemer, H.C., King, A.C., Comparison of the Atkins, Zone, Ornish, and LEARN diets for change in weight and related risk factors among overweight premenopausal women: The A to Z weight loss study: A randomized trial (2007) Journal of the American Medical Association, 297 (9), pp. 969-977. , http://jama.ama-assn.org/cgi/reprint/297/9/969, DOI 10.1001/jama.297.9.969Schwartz, M.W., Progress in the search for neuronal mechanisms coupling type 2 diabetes to obesity (2001) Journal of Clinical Investigation, 108 (7), pp. 963-964. , DOI 10.1172/JCI200114127Morton, G.J., Cummings, D.E., Baskin, D.G., Barsh, G.S., Schwartz, M.W., Central nervous system control of food intake and body weight (2006) Nature, 443 (7109), pp. 289-295. , DOI 10.1038/nature05026, PII NATURE05026Woods, A., Cheung, P.C., Smith, F.C., Characterization of AMP-activated protein kinase beta and gamma subunits. Assembly of the heterotrimeric complex in vitro (1996) J Biol Chem, 271, pp. 10282-10290Dhillo, W.S., Appetite regulation: An overview (2007) Thyroid, 17 (5), pp. 433-445. , DOI 10.1089/thy.2007.0018Ropelle, E.R., Pauli, J.R., Zecchin, K.G., Ueno, M., De Souza, C.T., Morari, J., Faria, M.C., Carvalheira, J.B.C., A central role for neuronal adenosine 5′-monophosphate-activated protein kinase in cancer-induced anorexia (2007) Endocrinology, 148 (11), pp. 5220-5229. , http://endo.endojournals.org/cgi/reprint/148/11/5220, DOI 10.1210/en.2007-0381Carvalheira, J.B.C., Ribeiro, E.B., Araujo, E.P., Guimaraes, R.B., Telles, M.M., Torsoni, M., Gontijo, J.A.R., Saad, M.J.A., Selective impairment of insulin signalling in the hypothalamus of obese Zucker rats (2003) Diabetologia, 46 (12), pp. 1629-1640. , DOI 10.1007/s00125-003-1246-xRopelle, E.R., Fernandes, M.F., Flores, M.B., Central exercise action increases the AMPK and mTOR response to leptin (2008) PLoS One, 3, p. 3856Ropelle, E.R., Pauli, J.R., Fernandes, M.F., A central role for neuronal AMP-activated protein kinase (AMPK) and mammalian target of rapamycin (mTOR) in high-protein diet-induced weight loss (2008) Diabetes, 57, pp. 594-605Ropelle, E.R., Pauli, J.R., Prada, P., Inhibition of hypothalamic Foxo1 expression reduced food intake in diet-induced obesity rats (2009) J Physiol, 587, pp. 2341-2351Ropelle, E.R., Flores, M.B., Cintra, D.E., IL-6 and IL-10 anti-inflammatory activity links exercise to hypothalamic insulin and leptin sensitivity through IKKbeta and ER stress inhibition (2010) PLoS Biol, 8, p. 1000465Pimentel, G.D., Lira, F.S., Rosa, J.C., Intake of trans fatty acids during gestation and lactation leads to hypothalamic inflammation via TLR4/NFkappaBp65 signaling in adult offspring (2012) J Nutr Biochem, 23, pp. 265-271Xue, B., Kahn, B.B., AMPK integrates nutrient and hormonal signals to regulate food intake and energy balance through effects in the hypothalamus and peripheral tissues (2006) Journal of Physiology, 574 (1), pp. 73-83. , DOI 10.1113/jphysiol.2006.113217Minokoshi, Y., Alquier, T., Furukawa, H., Kim, Y.-B., Lee, A., Xue, B., Mu, J., Kahn, B.B., AMP-kinase regulates food intake by responding to hormonal and nutrient signals in the hypothalamus (2004) Nature, 428 (6982), pp. 569-574. , DOI 10.1038/nature02440Kahn, B.B., Alquier, T., Carling, D., Hardie, D.G., AMP-activated protein kinase: Ancient energy gauge provides clues to modern understanding of metabolism (2005) Cell Metabolism, 1 (1), pp. 15-25. , DOI 10.1016/j.cmet.2004.12.003, PII S1550413104000099Cota, D., Proulx, K., Blake Smith, K.A., Kozma, S.C., Thomas, G., Woods, S.C., Seeley, R.J., Hypothalamic mTOR signaling regulates food intake (2006) Science, 312 (5775), pp. 927-930. , DOI 10.1126/science.1124147Lage, R., Dieguez, C., Vidal-Puig, A., AMPK: A metabolic gauge regulating whole-body energy homeostasis (2008) Trends Mol Med, 14, pp. 539-549Kola, B., Hubina, E., Tucci, S.A., Kirkham, T.C., Garcia, E.A., Mitchell, S.E., Williams, L.M., Korbonits, M., Cannabinoids and ghrelin have both central and peripheral metabolic and cardiac effects via AMP-activated protein kinase (2005) Journal of Biological Chemistry, 280 (26), pp. 25196-25201. , DOI 10.1074/jbc.C500175200Claret, M., Smith, M.A., Batterham, R.L., Selman, C., Choudhury, A.I., Fryer, L.G.D., Clements, M., Withers, D.J., AMPK is essential for energy homeostasis regulation and glucose sensing by POMC and AgRP neurons (2007) Journal of Clinical Investigation, 117 (8), pp. 2325-2336. , http://www.jci.org/cgi/reprint/117/8/2325, DOI 10.1172/JCI31516Lopez, M., Lage, R., Saha, A.K., Perez-Tilve, D., Vazquez, M.J., Varela, L., Sangiao-Alvarellos, S., Vidal-Puig, A., Hypothalamic fatty acid metabolism mediates the orexigenic action of ghrelin (2008) Cell Metabolism, 7 (5), pp. 389-399. , DOI 10.1016/j.cmet.2008.03.006, PII S1550413108000776Lopez, M., Varela, L., Vazquez, M.J., Hypothalamic AMPK and fatty acid metabolism mediate thyroid regulation of energy balance (2010) Nat Med, 16, pp. 1001-1008Claret, M., Smith, M.A., Knauf, C., Deletion of Lkb1 in pro-opiomelanocortin neurons impairs peripheral glucose homeostasis in mice (2011) Diabetes, 60, pp. 735-745Carling, D., Hardie, D.G., The substrate and sequence specificity of the AMP-activated protein kinase. Phosphorylation of glycogen synthase and phosphorylase kinase (1989) Biochimica et Biophysica Acta - Molecular Cell Research, 1012 (1), pp. 81-86. , DOI 10.1016/0167-4889(89)90014-1Beg, Z.H., Allmann, D.W., Gibson, D.M., Modulation of 3-hydroxy-3-methylglutaryl coenzyme A reductase activity with cAMP and wth protein fractions of rat liver cytosol (1973) Biochem Biophys Res Commun, 54, pp. 1362-1369Carlson, C.A., Kim, K.H., Regulation of hepatic acetyl coenzyme A carboxylase by phosphorylation and dephosphorylation (1973) J Biol Chem, 248, pp. 378-380Hardie, D.G., The AMP-activated protein kinase pathway - New players upstream and downstream (2004) Journal of Cell Science, 117 (23), pp. 5479-5487. , DOI 10.1242/jcs.01540Minokoshi, Y., Kim, Y.-B., Peroni, O.D., Fryer, L.G.D., Muller, C., Carling, D., Kahn, B.B., Leptin stimulates fatty-acid oxidation by activating AMP-activated protein kinase (2002) Nature, 415 (6869), pp. 339-343. , DOI 10.1038/415339aKubota, N., Yano, W., Kubota, T., Yamauchi, T., Itoh, S., Kumagai, H., Kozono, H., Kadowaki, T., Adiponectin stimulates amp-activated protein kinase in the hypothalamus and increases food intake (2007) Cell Metabolism, 6 (1), pp. 55-68. , DOI 10.1016/j.cmet.2007.06.003, PII S1550413107001593Hayes, M.R., Bradley, L., Grill, H.J., Endogenous hindbrain glucagon-like peptide-1 receptor activation contributes to the control of food intake by mediating gastric satiation signaling (2009) Endocrinology, 150, pp. 2654-2659Andersson, U., Filipsson, K., Abbott, C.R., Woods, A., Smith, K., Bloom, S.R., Carling, D., Small, C.J., AMP-activated Protein Kinase Plays a Role in the Control of Food Intake (2004) Journal of Biological Chemistry, 279 (13), pp. 12005-12008. , DOI 10.1074/jbc.C300557200Obici, S., Feng, Z., Arduini, A., Conti, R., Rossetti, L., Inhibition of hypothalamic carnitine palmitoyltransferase-1 decreases food intake and glucose production (2003) Nature Medicine, 9 (6), pp. 756-761. , DOI 10.1038/nm873Loftus, T.M., Jaworsky, D.E., Frehywot, C.L., Townsend, C.A., Ronnett, G.V., Daniel Lane, M., Kuhajda, F.P., Reduced food intake and body weight in mice treated with fatty acid synthase inhibitors (2000) Science, 288 (5475), pp. 2379-2381. , DOI 10.1126/science.288.5475.2379Blouet, C., Jo, Y.H., Li, X., Schwartz, G.J., Mediobasal hypothalamic leucine sensing regulates food intake through activation of a hypothalamus-brainstem circuit (2009) J Neurosci, 29, pp. 8302-8311Chau-Van, C., Gamba, M., Salvi, R., Gaillard, R.C., Pralong, F.P., Metformin inhibits adenosine 5′-monophosphate-activated kinase activation and prevents increases in neuropeptide Y expression in cultured hypothalamic neurons (2007) Endocrinology, 148 (2), pp. 507-511. , http://endo.endojournals.org/cgi/reprint/148/2/507, DOI 10.1210/en.2006-1237Kim, Y.W., Kim, J.Y., Park, Y.H., Metformin restores leptin sensitivity in high-fat-fed obese rats with leptin resistance (2006) Diabetes, 55, pp. 716-724Dansinger, M.L., Gleason, J.A., Griffith, J.L., Selker, H.P., Schaefer, E.J., Comparison of the Atkins, Ornish, Weight Watchers, and Zone Diets for weight loss and heart disease risk reduction: A randomized trial (2005) Journal of the American Medical Association, 293 (1), pp. 43-53. , DOI 10.1001/jama.293.1.43Shigemitsu, K., Tsujishita, Y., Miyake, H., Hidayat, S., Tanaka, N., Hara, K., Yonezawa, K., Structural requirement of leucine for activation of p70 S6 kinase (1999) FEBS Letters, 447 (2-3), pp. 303-306. , DOI 10.1016/S0014-5793(99)00304-X, PII S001457939900304XTome, D., Schwarz, J., Darcel, N., Protein, amino acids, vagus nerve signaling, and the brain (2009) Am J Clin Nutr, 90, pp. 838S-843SPurpera, M.N., Shen, L., Taghavi, M., Impaired branched chain amino acid metabolism alters feeding behavior and increases orexigenic neuropeptide expression in the hypothalamus (2012) J Endocrinol, 212, pp. 85-94Catania, C., Binder, E., Cota, D., MTORC1 signaling in energy balance and metabolic disease (2011) Int J Obes (Lond), 35, pp. 751-761Cota, D., Matter, E.K., Woods, S.C., The role of hypothalamic mammalian target of rapamycin complex 1 signaling in diet-induced obesity (2008) J Neurosci, 28, pp. 7202-7208Xu, G., Kwon, G., Cruz, W.S., Marshall, C.A., McDaniel, M.L., Metabolic regulation by leucine of translation initiation through the mTOR-signaling pathway by pancreatic β-cells (2001) Diabetes, 50 (2), pp. 353-360Fujita, S., Dreyer, H.C., Drummond, M.J., Glynn, E.L., Cadenas, J.G., Yoshizawa, F., Volpi, E., Rasmussen, B.B., Nutrient signalling in the regulation of human muscle protein synthesis (2007) Journal of Physiology, 582 (2), pp. 813-823. , DOI 10.1113/jphysiol.2007.134593Wilson, G.J., Layman, D.K., Moulton, C.J., Leucine or carbohydrate supplementation reduces AMPK and eEF2 phosphorylation and extends postprandial muscle protein synthesis in rats (2011) Am J Physiol Endocrinol Metab, 301, pp. 1236-E1242Du, M., Shen, Q.W., Zhu, M.J., Ford, S.P., Leucine stimulates mammalian target of rapamycin signaling in C2C12 myoblasts in part through inhibition of adenosine monophosphate-activated protein kinase (2007) Journal of Animal Science, 85 (4), pp. 919-927. , DOI 10.2527/jas.2006-342Aftring, R.P., Block, K.P., Buse, M.G., Leucine and isoleucine activate skeletal muscle branched-chain alpha-keto acid dehydrogenase in vivo (1986) Am J Physiol, 250, pp. 599-E604Mayer, J., Regulation of energy intake and the body weight: The glucostatic theory and the lipostatic hypothesis (1955) Ann N y Acad Sci, 63, pp. 15-43Anand, B.K., Chhina, G.S., Sharma, K.N., Activity of single neurons in the hypothalamic feeding centers: Effect of glucose (1964) Am J Physiol, 207, pp. 1146-1154Oomura, Y., Kimura, K., Ooyama, H., Reciprocal activities of the ventromedial and lateral hypothalamic areas of cats (1964) Science, 143, pp. 484-485Mizuno, Y., Oomura, Y., Glucose responding neurons in the nucleus tractus solitarius of the rat: In vitro study (1984) Brain Research, 307 (1-2), pp. 109-116Nakano, Y., Oomura, Y., Lenard, L., Feeding-related activity of glucose- and morphine-sensitive neurons in the monkey amygdala (1986) Brain Research, 399 (1), pp. 167-172. , DOI 10.1016/0006-8993(86)90613-XCha, S.H., Wolfgang, M., Tokutake, Y., Differential effects of central fructose and glucose on hypothalamic malonyl-CoA and food intake (2008) Proc Natl Acad Sci U S A, 105, pp. 16871-16875Kim, M.-S., Park, J.-Y., Namkoong, C., Jang, P.-G., Ryu, J.-W., Song, H.-S., Yun, J.-Y., Lee, K.-U., Anti-obesity effects of α-lipoic acid mediated by suppression of hypothalamic AMP-activated protein kinase (2004) Nature Medicine, 10 (7), pp. 727-733. , DOI 10.1038/nm1061Wolfgang, M.J., Cha, S.H., Sidhaye, A., Regulation of hypothalamic malonyl-CoA by central glucose and leptin (2007) Proc Natl Acad Sci U S A, 104, pp. 19285-19290Lee, K., Li, B., Xi, X., Suh, Y., Martin, R.J., Role of neuronal energy status in the regulation of adenosine 5′-monophosphate-activated protein kinase, orexigenic neuropeptides expression, and feeding behavior (2005) Endocrinology, 146 (1), pp. 3-10. , DOI 10.1210/en.2004-0968Cai, F., Gyulkhandanyan, A.V., Wheeler, M.B., Belsham, D.D., Glucose regulates AMP-activated protein kinase activity and gene expression in clonal, hypothalamic neurons expressing proopiomelanocortin: Additive effects of leptin or insulin (2007) Journal of Endocrinology, 192 (3), pp. 605-614. , DOI 10.1677/JOE-06-0080Zhang, H., Zhang, G., Gonzalez, F.J., Hypoxia-inducible factor directs POMC gene to mediate hypothalamic glucose sensing and energy balance regulation (2011) PLoS Biol, 9, p. 1001112De Souza, C.T., Araujo, E.P., Bordin, S., Ashimine, R., Zollner, R.L., Boschero, A.C., Saad, M.J.A., Velloso, L.A., Consumption of a fat-rich diet activates a proinflammatory response and induces insulin resistance in the hypothalamus (2005) Endocrinology, 146 (10), pp. 4192-4199. , http://endo.endojournals.org/cgi/reprint/146/10/4192, DOI 10.1210/en.2004-1520Zhang, X., Zhang, G., Zhang, H., Hypothalamic IKKbeta/NF-kappaB and ER stress link overnutrition to energy imbalance and obesity (2008) Cell, 135, pp. 61-73Posey, K.A., Clegg, D.J., Printz, R.L., Hypothalamic proinflammatory lipid accumulation, inflammation, and insulin resistance in rats fed a high-fat diet (2009) Am J Physiol Endocrinol Metab, 296, pp. 1003-E1012Benoit, S.C., Kemp, C.J., Elias, C.F., Palmitic acid mediates hypothalamic insulin resistance by altering PKC-theta subcellular localization in rodents (2009) J Clin Invest, 119, pp. 2577-2589Tsukumo, D.M.L., Carvalho-Filho, M.A., Carvalheira, J.B.C., Prada, P.O., Hirabara, S.M., Schenka, A.A., Araujo, E.P., Saad, M.J.A., Loss-of-function mutation in toll-like receptor 4 prevents diet-induced obesity and insulin resistance (2007) Diabetes, 56 (8), pp. 1986-1998. , http://diabetes.diabetesjournals.org/cgi/reprint/56/8/1986, DOI 10.2337/db06-1595Lumeng, C.N., Saltiel, A.R., Inflammatory links between obesity and metabolic disease (2011) J Clin Invest, 121, pp. 2111-2117Watts, C., Location, location, location: Identifying the neighborhoods of LPS signaling (2008) Nature Immunology, 9 (4), pp. 343-345. , DOI 10.1038/ni0408-343, PII NI0408-343Horng, T., Barton, G.M., Medzhitov, R., TIRAP: An adapter molecule in the Toll signaling pathway (2001) Nat Immunol, 2, pp. 835-841Martin, T.L., Alquier, T., Asakura, K., Furukawa, N., Preitner, F., Kahn, B.B., Diet-induced obesity alters AMP kinase activity in hypothalamus and skeletal muscle (2006) Journal of Biological Chemistry, 281 (28), pp. 18933-18941. , http://www.jbc.org/cgi/reprint/281/28/18933, DOI 10.1074/jbc.M512831200Obici, S., Feng, Z., Morgan, K., Stein, D., Karkanias, G., Rossetti, L., Central administration of oleic acid inhibits glucose production and food intake (2002) Diabetes, 51 (2), pp. 271-275Jo, Y.H., Su, Y., Gutierrez-Juarez, R., Oleic acid directly regulates POMC neuron excitability in the hypothalamus (2009) J Neurophysiol, 101, pp. 2305-2316Schwinkendorf, D.R., Tsatsos, N.G., Gosnell, B.A., Effects of central administration of distinct fatty acids on hypothalamic neuropeptide expression and energy metabolism (2011) Int J Obes (Lond), 35, pp. 336-344Jia, M., Xue, N., Cao, Z., Effects of dietary different ratios of n-3 to n-6 polyunsaturated fatty acids influence lipid metabolism and appetite of rats (2009) Wei Sheng Yan Jiu, 38, pp. 175-178Gomez-Pinilla, F., Ying, Z., Differential effects of exercise and dietary docosahexaenoic acid on molecular systems associated with control of allostasis in the hypothalamus and hippocampus (2010) Neuroscience, 168, pp. 130-137Wallace, R.J., McKain, N., Shingfield, K.J., Devillard, E., Isomers of conjugated linoleic acids are synthesized via different mechanisms in ruminal digesta and bacteria (2007) Journal of Lipid Research, 48 (10), pp. 2247-2254. , http://www.jlr.org/cgi/reprint/48/10/2247, DOI 10.1194/jlr.M700271-JLR200Pariza, M.W., Park, Y., Cook, M.E., The biologically active isomers of conjugated linoleic acid (2001) Progress in Lipid Research, 40 (4), pp. 283-298. , DOI 10.1016/S0163-7827(01)00008-X, PII S016378270100008XPariza, M.W., Perspective on the safety and effectiveness of conjugated linoleic acid (2004) Am J Clin Nutr, 79, pp. 1132S-1136SJiang, S., Wang, Z., Riethoven, J.J., Conjugated linoleic acid activates AMP-activated protein kinase and reduces adiposity more effectively when used with metformin in mice (2009) J Nutr, 139, pp. 2244-2251Miner, J.L., Cederberg, C.A., Nielsen, M.K., Chen, X., Baile, C.A., Conjugated linoleic acid (CLA), body fat, and apoptosis (2001) Obesity Research, 9 (2), pp. 129-134Park, Y., Storkson, J.M., Albright, K.J., Liu, W., Pariza, M.W., Evidence that the trans-10,cis-12 isomer of conjugated linoleic acid induces body composition changes in mice (1999) Lipids, 34 (3), pp. 235-241Cao, Z.-P., Wang, F., Xiang, X.-S., Cao, R., Zhang, W.-B., Gao, S.-B., Intracerebroventricular administration of conjugated linoleic acid (CLA) inhibits food intake by decreasing gene expression of NPY and AgRP (2007) Neuroscience Letters, 418 (3), pp. 217-221. , DOI 10.1016/j.neulet.2007.03.010, PII S0304394007002947So, M.H., Tse, I.M., Li, E.T., Dietary fat concentration influences the effects of trans-10, cis-12 conjugated linoleic acid on temporal patterns of energy intake and hypothalamic expression of appetite-controlling genes in mice (2009) J Nutr, 139, pp. 145-151Carreau, J.P., Biosynthesis of lipoic acid via unsaturated fatty acids (1979) Methods Enzymol, 62, pp. 152-158Reed, L.J., A trail of research from lipoic acid to alpha-keto acid dehydrogenase complexes (2001) J Biol Chem, 276, pp. 38329-38336Liu, J., The effects and mechanisms of mitochondrial nutrient α-lipoic acid on improving age-associated mitochondrial and cognitive dysfunction: An overview (2008) Neurochemical Research, 33 (1), pp. 194-203. , DOI 10.1007/s11064-007-9403-0El Midaoui, A., Elimadi, A., Wu, L., Haddad, P.S., De Champlain, J., Lipoic acid prevents hypertension, hyperglycemia, and the increase in heart mitochondrial superoxide production (2003) American Journal of Hypertension, 16 (3), pp. 173-179. , DOI 10.1016/S0895-7061(02)03253-3, PII S0895706102032533Targonsky, E.D., Dai, F., Koshkin, V., Karaman, G.T., Gyulkhandanyan, A.V., Zhang, Y., Chan, C.B., Wheeler, M.B., Lipoic acid regulates AMP-activated protein kinase and inhibits insulin secretion from beta cells (2006) Diabetologia, 49 (7), pp. 1587-1598. , DOI 10.1007/s00125-006-0265-9Zhang, Y., Han, P., Wu, N., Amelioration of lipid abnormalities by alpha-lipoic acid through antioxidative and anti-inflammatory effects (2011) Obesity (Silver Spring), 19, pp. 1647-1653Turnley, A.M., Stapleton, D., Mann, R.J., Witters, L.A., Kemp, B.E., Bartlett, P.F., Cellular distribution and developmental expression of AMP-activated protein kinase isoforms in mouse central nervous system (1999) Journal of Neurochemistry, 72 (4), pp. 1707-1716. , DOI 10.1046/j.1471-4159.1999.721707.xCheng, P.Y., Lee, Y.M., Yen, M.H., Reciprocal effects of alpha-lipoic acid on adenosine monophosphate- activated protein kinase activity in obesity induced by ovariectomy in rats (2011) Menopause, 18, pp. 1010-1017Zhou, J., Zhou, S., Tang, J., Protective effect of berberine on beta cells in streptozotocin- and high-carbohydrate/high-fat diet-induced diabetic rats (2009) Eur J Pharmacol, 606, pp. 262-268Hur, J.M., Hyun, M.S., Lim, S.Y., The combination of berberine and irradiation enhances anti-cancer effects via activation of p38 MAPK pathway and ROS generation in human hepatoma cells (2009) J Cell Biochem, 107, pp. 955-964Wang, J.M., Yang, Z., Xu, M.G., Berberine-induced decline in circulating CD31 +/CD42- microparticles is associated with improvement of endothelial function in humans (2009) Eur J Pharmacol, 614, pp. 77-83Wang, X., Wang, R., Xing, D., Su, H., Ding, Y., D

    New Mechanisms By Which Physical Exercise Improves Insulin Resistance In The Skeletal Muscle [novos Mecanismos Pelos Quais O Exercício Físico Melhora A Resistência à Insulina No Músculo Esquelético]

    No full text
    Insulin resistance of skeletal muscle glucose transport is a key-defect for the development of impaired glucose tolerance and type 2 diabetes. However, it is known that both an acute bout of exercise and chronic endurance exercise training can bring beneficial effects on insulin action in insulin-resistant states. However, little is currently known about the molecular effects of acute exercise on muscle insulin signaling in the post-exercise state in insulin-resistant organisms. This review provides new insight into the mechanism through which acute exercise restores insulin sensitivity, highlighting an important role for inflammatory proteins and S-nitrosation in the regulation of insulin signaling proteins in skeletal muscle.534399408Smith, A.G., Muscat, G.E., Skeletal muscle and nuclear hormone receptors: Implications for cardiovascular and metabolic disease (2005) Int J Biochem Cell Biol, 37 (10), pp. 2047-63Nuutila, P., Koivisto, V.A., Knuuti, J., Ruotsalainen, U., Teras, M., Haaparanta, M., Glucose-free fatty acid cycle operates in human heart and skeletal muscle in vivo (1992) The J Clin Invest, 89 (6), pp. 1767-74James, D.E., Burleigh, K.M., Kraegen, E.W., Chisholm, D.J., Effect of acute exercise and prolonged training on insulin response to intravenous glucose in vivo in rat (1983) J Appl Physiol, 55 (6), pp. 1660-4Eriksson, J., Tuominen, J., Valle, T., Sundberg, S., Sovijarvi, A., Lindholm, H., Aerobic endurance exercise or circuit-type resistance training for individuals with impaired glucose tolerance? (1998) Horm Metab Res, 30 (1), pp. 37-41Kennedy, J.W., Hirshman, M.F., Gervino, E.V., Ocel, J.V., Forse, R.A., Hoenig, S.J., Acute exercise induces GLUT4 translocation in skeletal muscle of normal human subjects and subjects with type 2 diabetes (1999) Diabetes, 48 (5), pp. 1192-7Luciano, E., Carneiro, E.M., Carvalho, C.R., Carvalheira, J.B., Peres, S.B., Reis, M.A., Endurance training improves responsiveness to insulin and modulates insulin signal transduction through the phosphatidylinositol 3-kinase/Akt-1 pathway (2002) Eur J Endocrinol, 147 (1), pp. 149-57Knowler, W.C., Barret-Connor, E., Fowler, S.E., Hamman, R.F., Lachin, J.M., Walker, E.A., Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin (2002) N Engl J Med, 346 (6), pp. 393-403Chauveau, A., Kaufamann, M., Expériences pour la determination du coefficient de l'activité nutritive et respiratoire des muscles en respos et en travail (1887) C R Hebd Seances Acad Sci, 104 (1), pp. 1126-32Burn, J.H., Dale, H.H., On the location of action of insulin (1924) J Physiol, 59 (6), pp. 164-92Bjorntorp, P., de Jounge, K., Sjostrom, L., Sullivan, L., The effect of physical training on insulin production in obesity (1970) Metabolism, 19 (8), pp. 631-8Bjorntorp, P., Fahlen, M., Grimby, G., Gustafson, A., Holm, J., Renstrom, P., Carbohydrate and lipid metabolism in middle-aged, physically well-trained men (1972) Metabolism, 21 (11), pp. 1037-44Mondon, C.E., Dolkas, C.B., Reaven, G.M., Site of enhanced insulin sensitivity in exercise-trained rats at rest (1980) Am J Physiol, 239 (3), pp. E169-77Patti, M.E., Kahn, C.R., The insulin receptor: A critical link in glucose homeostasis and insulin action (1998) J Basic Clin Physiol Pharmacol, 9 (2-4), pp. 89-109Pessin, J.E., Saltiel, A.R., Signaling pathways in insulin action: Molecular targets of insulin resistance (2000) J Clin Invest, 106 (2), pp. 165-9White, M.F., The IRS-signalling system: A network of docking proteins that mediate insulin action (1998) Molecular Cell Biochemistry, 182, pp. 3-11Backer, J.M., Myers Jr., M.G., Shoelson, S.E., Chin, D.J., Sun, X.J., Miralpeix, M., Phosphatidylinositol 3'-kinase is activated by association with IRS-1 during insulin stimulation (1992) EMBO J, 11 (9), pp. 3469-79Czech, M.P., Corvera, S., Signaling mechanisms that regulate glucose transport (1999) J Biol Chem, 274 (4), pp. 1865-8Shephard, P.R., Nave, B.T., Siddle, K., Insulin stimulation of glycogen synthesis and glycogen synthase activity is blocked by wortmannin and rapamycin in 3T3-L1 adipocytes: Evidence for the involvement of phosphoinositide 3-kinase and p70 ribosomal protein-S6 kinase (1995) Biochem J, 305 (PART 1), pp. 25-8Hayashi, T., Wojtaszewski, J.F., Goodyear, L.J., Exercise regulation of glucose transport in skeletal muscle (1997) Am J Physiol, 273 (6), pp. E1039-51Hardie, D.G., Carling, D., The AMP-activated protein kinase: Fuel gauge of the mammalian cell? (1997) Eur J Biochem, 246 (2), pp. 259-73Simoneau, J.A., Veerkamp, J.H., Turcotte, L.P., Kelley, D.E., Markers of capacity to utilize fatty acids in human skeletal muscle: Relation to insulin resistance and obesity and effects of weight loss (1999) FASEB, 13 (14), pp. 2051-60Wicklmayr, M., Rett, K., Fink, E., Tschollar, W., Dietze, G., Mehnert, H., Local liberation oh kinins by working skeletal muscle tissue in man (1988) Hormone Metabolism Research, 20 (8), p. 535Youn, J.H., Gulve, E.A., Holloszy, J.O., Calcium stimulates glucose transport in skeletal muscle by a pathway independent of contraction (1991) Am J Cell Physiol, 260 (3 PART 1), pp. C555-61Holloszy, J.O., Hansen, P.A., Regulation of glucose transport into skeletal muscle (1996) Rev Physiol Biochem Pharmacol, 128, pp. 99-103Roberts, C.K., Barnard, R.J., Jasman, A., Balon, T.W., Acute exercise increases nitric oxide synthase activity in skeletal muscle (1999) Am J physiol Endocrinol Metab, 277 (2 PART 1), pp. E390-4Ropelle, E.R., Pauli, J.R., Prada, P.O., de Souza, C.T., Picardi, P.K., Cintra, D.E., Reversal of diet-induced insulin resistance with single bout of exercise in the rat the role of PTP1B and IRS-1 serine phosphorylation (2007) J Physiol, 577, pp. 997-1007Pauli, J.R., Ropelle, E.R., Cintra, D.E., Carvalho-Filho, M.A., Moraes de Souza, C.T., Acute physical exercise reverses S-nitrosation of the insulin receptor, insulin receptor substrate 1, and protein kinase B/Akt in dietary induce obese Wistar rats (2008) J Physiol, 586, pp. 659-71Handschin, C., Spiegelman, B.M., The role of exercise and PGC-1 in inflammation and chronic disease (2008) Nature, 454, pp. 463-9Hotamisligil, G.S., Peraldi, P., Budavari, A., Ellis, R., White, M.F., Spiegelman, B.M., IRS-1 mediated inhibition of insulin receptor tyrosine kinase activity in TNF-alpha and obesity-induced insulin resistance (1996) Science, 271 (5249), pp. 665-8Dandona, P., Aljada, A., Bandyopadhyay, A., Inflammation: The link between insulin resistance, obesity and diabetes (2004) Trends Immunology, 25 (1), pp. 4-7Waki, H., Tontonoz, P., Endocrine functions of adipose tissue (2007) Annu Rev Pathol Mech Dis, 2, pp. 31-56Tsukumo, D.M., Carvalho-Filho, M.A., Carvalheira, J.B., Prada, P.O., Hirabara, S.M., Schenka, A.A., Loss-of-function mutation in toll-like receptor 4 prevents diet-induced and insulin resistance (2007) Diabetes, 56 (8), pp. 1986-8Foster, L.J., Klip, A., Mechanism and regulation of GLUT-4 vesicle fusion in muscle and fat cells (2000) Am J Cell Physiol, 279 (4), pp. C877-90Olson, A.L., Pessin, J.E., Structure, function, and regulation of the mammalian facilitative glucose transporter gene family (1996) Annu Rev Nutr, 16, pp. 235-56Knowler, W.C., Barret Connor, E., Fowler, S.E., Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin (2002) N Engl J Med, 346 (6), pp. 393-403McPherson, R., Jones, P.H., The metabolic syndrome and type 2 diabetes: Role of the adipocyte (2003) Curr Opin Lipidol, 14 (6), pp. 549-53Tuomilehto, J., Lindstrom, J., Eriksson, J.G., Valle, T.T., Hämäläinen, H., Ilanne-Parikka, P., Prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance (2001) N Engl J Med, 344, pp. 1343-50Shulman, G.I., Unraveling the cellular mechanism of insulin resistance in humans: New insights from magnetic resonance spectroscopy (2004) Physiology, 19, pp. 183-90Savage, D.B., Petersen, K.F., Shulman, G.I., Disordered lipid metabolism and the pathogenesis of insulin resistance (2007) Physiol Rev, 87 (2), pp. 507-20Waki, H., Tontonoz, P., Endocrine functions of adipose tissue (2007) Annu Rev Pathol, 2, pp. 31-56Kim, J.K., Fat uses a TOLL-road to connect inflammation and diabetes (2006) Cell Metab, 4 (6), pp. 417-9Milanski, M., Degasperi, G., Coope, A., Morari, J., Denis, R., Cintra, D.E., Saturated fatty acids produce an inflammatory response predominantly through the activation of TLR4 signaling in hypothalamus: Implications for the pathogenesis of obesity (2009) J Neurosci, 29 (2), pp. 359-70Shoelson, S.E., Lee, J., Yuan, M., Inflammation and the IKK beta/I kappa N/NF-kappa B axis in obesity- and diet-induced insulin resistance (2003) J Clin Invest, 106, pp. 171-6Hotamisligil, G.S., Inflammatory pathways and insulin action (2003) Int J Obes Relat Metab Disord, 27, pp. S53-55Carvalho-Filho, M.A., Ueno, M., Hirabara, S.M., Seabra, A.B., Carvalheira, J.B., de Oliveira, M.G., S-nitrosation of the insulin receptor, insulin receptor substrate 1, and protein kinase B/Akt: A novel mechanism of insulin resistance (2005) Diabetes, 54 (4), pp. 959-67Gross, S.S., Wolin, M.S., Nitric oxide: Pathophysiological mechanisms (1995) Annu Rev Physiol, 57, pp. 737-69Sugita, H., Kaneki, M., Tokunaga, E., Sugita, M., Koike, C., Yasuhara, S., Inducible nitric oxide synthase plays a role in LPS-induced hyperglycemia and insulin resistance (2002) Am J Physiol Endocrinol Metab, 282, pp. E386-94Carvalho-Filho, M.A., Ueno, M., Carvalheira, J.B., Velloso, L.A., Saad, M.J., Targeted disruption of iNOS prevents LPS-induced S-nitrosation of IRbeta/IRS-1 and Akt and insulin resistance in muscle of mice (2006) Am J Physiol Endocrinol Metab, 291 (3), pp. E476-82Petersen, A.M., Pedersen, B.K., The anti-inflammatory effect of exercise (2005) J Appl Physiol, 98 (4), pp. 1154-62Fischer, C.P., Berntsen, A., Perstrup, L.B., Eskildsen, P., Pedersen, B.K., Plasma levels of interleukin-6 and C-reactive protein are associated with physical inactivity independent of obesity (2007) Scand J Med Sci Sports, 17 (5), pp. 580-7Xie, L., Lee, S.Y., Andersen, J.N., Waters, S., Shen, K., Guo, X.L., Cellular effects of small molecule PTP-1B inhibitors on insulin signaling (2003) Biochemistry, 42 (44), pp. 3074-84Gum, R.J., Gaede, L.L., Koterski, S.L., Heindel, M., Clampit, J.E., Zinker, B.A., Reduction of protein tyrosine phosphatase 1B increases insulin-dependent signaling in ob/ob mice (2003) Diabetes, 52 (1), pp. 21-8Elchebly, M., Payette, P., Michaliszyn, E., Cromlish, W., Collins, S., Loy, A.L., Increased insulin sensitivity and obesity resistance in mice lacking the protein tyrosine phosphatase-1B gene (1999) Science, 283 (5407), pp. 1544-8Sriwijitkamol, A., Coletta, D.K., Wajcberg, E., Balbontin, G.B., Reyna, Barrientes, J., Effect of acute exercise on AMPK signaling in skeletal muscle of subjects with type 2 diabetes: A time-course and dose-response study (2007) Diabetes, 56 (3), pp. 836-48Pilon, G., Dallaire, P., Marette, A., Inhibition of inducible nitric-oxide synthase by activators of AMP-activated protein kinase: A new mechanism of action of insulin-sensitizing drugs (2004) J Biol Chem, 279 (20), pp. 20767-74Musi, N., Fujii, N., Hirshman, M.F., Ekberg, I., Fröberg, O., Ljungqvist, O., AMP-activated protein kinase (AMPK) is activated in muscle of subjects with type 2 diabetes during exercise (2001) Diabetes, 50 (5), pp. 921-7Pauli, J.R., Ropelle, E.R., Cintra, D.E., de Souza, C.T., Efeitos do exercício físico na expressão e atividade da AMPK em ratos obesos induzidos por dieta rica em gordura (2009) Rev Bras Med Esporte, 15 (2), pp. 99-104Balon, T.W., Nadler, J.L., Evidence that nitric oxide increases glucose transport in skeletal muscle (1997) J Appl Physiol, 82 (1), pp. 359-63Kapur, S., Marcotte, B., Marette, A., Mechanism of adipose tissue iNOS induction in endotoxemia (1999) Am J Physiol Endocrinol Metab, 276 (4 PART 1), pp. E635-41Bisquolo, V.A., Cardoso Jr., C.G., Ortega, K.C., Gusmao, J.L., Tinucci, T., Negrao, C.E., Previous exercise attenuates muscle sympathetic activity and increases blood flow during acute euglycemic hyperinsulinemia (2005) J Appl Physiol, 98 (3), pp. 866-7

    Analysis Of The Physical Activity Effects And Measurement Of Pro-inflammatory Cytokines In Irradiated Lungs In Rats [análise Dos Efeitos Da Atividade Física E Mensuração De Citocinas Pró-inflamatórias Em Pulmões Irradiados Em Ratos]

    No full text
    PURPOSE: To study if the pre-radiotherapy physical activity has radio-protective elements, by measuring the radio-induced activation of pro-inflammatory cytokines as interleukin-6 (il-6), transforming growth factor -β (tgf -β), tumor necrosis factor -α (tnf-α) and protein beta kinase β (ikkβ), through western blotting analysis. METHODS: A randomized study with 28 Wistar hannover rats, males, with a mean age of 90 days and weighing about 200 grams. The animals were divided into three groups: (GI, GII and GIII). GIII group were submitted to swimming for eight weeks (zero load, three times a week, about 30 minutes). Then, the groups (except the control group) were submitted to irradiation by cobalt therapy, single dose of 3.5 gray in the whole body. All animals were sacrificed by overdose of pentobarbital, according to the time for analysis of cytokines, and then a fragment of the lower lobe of the right lung went to western blotting analysis. RESULTS: The cytokines IKK β, TNF-α and IL-6 induced by radiation in the lung were lower in the exercised animals. However, exercise did not alter the radiation-induced increase in tgf-β. CONCLUSION: The results show a lower response in relation to inflammatory cytokines in the group that practiced the exercise pre-radiotherapy, showing that exercise can protect tissues from tissue damage due to irradiation.273223230Liao, Z., Cox, J.D., Komaki, R., Radiochemotherapy of esofaphageal cancer (2007) J Thorac Oncol, 2 (6), pp. 553-568D'amico, T.A., Outcomes after surgery for esophageal cancer (2007) Gastrointest Cancer Res, 1 (5), pp. 188-196Tercioti Jr., V., Lopes, L.R., Coelho, N.J.D., Carvalheira, J.B., Andreollo, N.A., Local effectiveness and complications of neoadjuvant therapy in esophageal squamous cell carcinoma: Radiotherapy versus chemoradiotherapy (2011) Rev Col Bras Cir, 38 (4), pp. 227-234Miyata, H., Yamasaki, M., Takiguchi, S., Nakajima, K., Fujiwara, Y., Nishida, T., Mori, M., Doki, Y., Salvage esophagectomy after definitive chemoradiotherapy for thoracic esophageal cancer (2009) J Surg Oncol, 100, pp. 442-446Asakura, H., Hashimoto, T., Zenda, S., Harada, H., Hirakawa, K., Mizumoto, M., Furutani, K., Nishimura, T., Analysis of dose-volume histogram parameters for radiation pneumonitis after definitive concurrent chemoradiotherapy for esophageal cancer (2010) Radiother Oncol, 95, pp. 240-244Yu, H.M., Liu, Y.F., Cheng, Y.F., Hu, L.K., Hou, M., Effects of rhubarb extract on radiation induced lung toxicity via decreasing transforming growth factor-beta-1 and interleukin-6 in lung cancer patients treated with radiotherapy (2008) Lung Cancer, 59, pp. 219-226Sakai, M., Iwakawa, M., Iwakura, Y., Ohta, T., Tsujii, H., Imai, T., CD44 and bak expression in IL-6 or TNF-alpha gene knockout mice after whole lung irradiation (2008) J Radiat Res, 49, pp. 409-416Novakova-Jiresova, A., Luijk, P.V., Goor, H.V., Kampinga, H.H., Coppes, R.P., Pulmonary radiation injury: Identification of risk factors associated with regional hypersensitivity (2005) Cancer Res, 65, pp. 3568-3576Bao, P., Gao, W., Li, S., Zhang, L., Qu, S., Wu, C., Qi, H., Effect of pretreatment with high-dose ulinastatin in preventing radiation-induced pulmonary injury in rats (2009) Eur J Pharmacol, 603, pp. 114-119Schmid, J.A., Birbach, A., IkB kinase β (Ikkβ/Ikk2/IkBkB)- a key molecule in signaling to the transcription factor NF-kB (2008) Cytokine Growth Factor Rev, 19, pp. 157-165Mussi, R.K., Camargo, E.A., Ferreira, T., de Moraes, C., Delbin, M.A., Toro, I.F., Brancher, S., Antunes, E., Exercise training reduces pulmonary ischaemia-reperfusion-induced inflammatory responses (2008) Eur Respir J, 31 (3), pp. 645-649Gannon, G.A., Rhind, S.G., Suzui, M., Shek, P.N., Shephard, R.J., Circulating levels of peripheral blood leucocytes and cytokines following competitive cycling (1997) Can J Appl Physiol, 22, pp. 133-147Nieman, D.C., Special feature for the Olympics: Exercise effects on systemic immunity (2000) Immunol Cell Biol, 78, pp. 496-501Triboulet, J.P., Mariette, C., Esophageal squamous cell carcinoma stage III: State of surgery after radiochemotherapy (2006) Cancer Radiother, 10, pp. 456-461Hermann, R.M., Horstmann, O., Haller, F., Perske, C., Christiansen, H., Hille, A., Schimidberger, H., Füzesi, L., Histomorphological tumor regression grading esophageal carcinoma after neoadjuvante radiochemotherapy: With score to use? (2006) Dis Esophagus, 5, pp. 329-334Cagol, M., Ruol, A., Sileni, V.C., de Salvo, G.L., Corti, L., Alfieri, R., Innocente, R., Ancona, E., Multinodal treatment in locally advanced esophageal cancer: A multicenter phase II study with neoadjuvant oxaliplatin, 5-fluorouracil, leucovorin and neoadjuvante radiotherapy: Prelimirary results (2006) Chir Ital, 4, pp. 433-439Rübe, C.E., Wilfert, F., Uthe, D., Schmid, K.W., Knoop, R., Willich, N., Schuck, A., Rübe, C., Modulation of radiation-induced tumor necrosis factor α (TNF-α) expression in the lung tissue by pentoxifyline (2002) Radiother Oncol, 64, pp. 177-187Arnold, R., Humbert, B., Werchau, H., Gallati, H., Königg, W., Interleukin-8, interleukin-6, and soluble tumor necrosis factor receptor type I release from a human pulmonary epithelial cell line (A549) exposed to respiratory syncytial virus (1994) Immunology, 82, pp. 126-133Chen, Y., Rubin, P., Williams, J., Hernady, E., Smudzin, T., Okunieff, P., (2001) Int J Radiat Oncol Biol Phys, 49 (3), pp. 641-648Sriwijitkamol, A., Coletta, D.K., Wajcberg, E., Balbontin, G.B., Reyna, S.M., Barrientes, J., Eagan, P.A., Musi, N., Effect of acute exercise on AMPK signiling in skeletal muscle of subjects with type 2 diabetes: A time-course and dose-response study (2007) Diabetes, 56 (3), pp. 836-848Anscher, M.S., Peters, W.P., Reisenbichler, H., Petros, W.P., Jirtle, R.L., Transforming growth factor beta as predictor of liver and lung fibrosis after autologous bone marrow transplantation for advanced breast cancer (1993) N Engl J Med, 328, pp. 1592-1598Fu, X.L., Huang, H., Bentel, G., Clough, R., Jirtle, R.L., Kong, F.M., Marks, L.B., Anscher, M.S., Predicting the risk of symptomatic radiation-induced lung injury using both the physical and biologic parameters V30 and transforming growth factor β (2001) Int J Radiat Oncol Biol Phys, 50 (4), pp. 899-908Mattos, M.D., Kimura, E.T., Silva, M.R.R., Egami, M.I., Segreto, R.A., Segreto, H.R.C., Ativação da proteína TGFβ1 latente em pulmão irradiado in vivo (2002) Rev Assoc Med Bras, 48 (4), pp. 329-334Lixuan, Z., Jingcheng, D., Wenqin, Y., Jianhua, H., Baojun, L., Xiaotao, F., Baicalin attenuates inflammation by inhibiting NF-kappaβ activation in cigarette smoke induced inflammatory models (2010) Pulm Pharmacol Ther, 23 (5), pp. 411-419Colbert, L.H., Davis, J.M., Essig, D.A., Ghaffar, A., Mayer, E.P., Tissue expression and plasma concentrations of TNF-α, IL-1β, and IL-6 following treadmill exercise in mice (2001) Int J Sports Med, 22, pp. 261-267Ostrowski, K., Rohde, T., Zacho, M., Asp, S., Pedersen, B.K., Evidence that interleukin-6 is produced in human skeletal muscle during prolonged running (1998) J Physiol, 508, pp. 949-953Ullum, H., Haahr, P.M., Diamant, M., Palmo, J., Halkjaer-Kristensen, J., Pedersen, B.K., Bicycle exercise enhances plasma IL-6 but does not change IL-1α, IL-1β, IL-6 or TNFα pre-mRNA in BMNC (1994) J Appl Physiol, 77, pp. 93-97Oliveira, A.G., Carvalho, B.M., Tobar, N., Ropelle, E.R., Pauli, J.R., Bagarolli, R.A., Guadagnini, D., Saad, M.J., Physical exercise reduces circulating lipopolysaccharide and TLR4 activation and improves insulin signaling in tissues of DIO rats (2011) Diabetes, 60, pp. 784-796Lira, F.S., Rosa, J.C., Pimentel, G.D., Tarini, V.A.F., Arida, R.M., Faloppa, F., Alves, E.S., Santos, R.V., Inflammation and adipose tissue: Effects of progressive load training in rats (2010) Lipids Health Dis, 9, p. 109Ropelle, E.R., Flores, M.B., Cintra, D.E., Rocha, G.Z., Pauli, J.R., Morari, J., de Souza, C.T., Carvalheira, J.B., IL-6 and IL-10 anti-inflammatory activity links exercise to hypothalamic insulin and leptin sensitivity through IKKbeta and ER stress inhibition (2010) PLoS Biol, 8 (8), pp. e1000465Chen, L., Wang, T., Wang, X., Sun, B.B., Li, J.Q., Liu, D.S., Zhang, S.F., Wen, F.Q., Blockade of advanced glycation end product formation attenuates bleomycin-induced pulmonary fibrosis in rats (2009) Respir Res, 10, p. 55Kim, J.Y., Kim, Y.S., Kim, Y.K., Park, H.J., Kim, S.J., Kang, J.H., Wang, Y.P., Yoon, S.C., TGF-β1 dynamics during radiation therapy and its correlation to symptomatic radiation pneumonitis in lung cancer patients (2009) Radiat Oncol, 4, p. 59Moon, C., Lee, Y.J., Park, H.J., Chong, Y.H., Kang, J.L., N-acetylcysteine inhibits RhoA and promotes apoptotic cell clearance during intense lung inflammation (2010) Am J Respir Crit Care Med, 181, pp. 374-387Morita, M., Yoshida, R., Ikeda, K., Egashira, A., Oki, E., Sadanaga, N., Kakeji, Y., Maehara, Y., Acute lung injury following an esophagectomy for esophageal cancer, with special reference to the clinical factors and cytokine levels of peripheral blood and pleural drainage fluid (2008) Dis Esophagus, 21 (1), pp. 30-36Sakamoto, K., Arakawa, H., Mita, S., Ishiko, T., Ikei, S., Egami, H., Hisano, S., Ogawa, M., Elevation of circulating interleukin-6 after surgery: Factors influencing serum level (1994) Cytokine, 6, pp. 181-186Adams, E.J., Warrington, A.P., A comparison between cobalt and linear accelerator-based treatment plans for conformal and intensity-modulated radiotherapy (2008) Br J Radiol, 81, pp. 304-310Jin, H., Tucker, S.L., Liu, H.H., Wei, X., Yom, S.S., Wang, S., Komaki, R., Liao, Z., Dose-volume thresholds and smoking status for the risk of treatment-related pneumonitis in inoperable non-small cell lung cancer treated with definitive radiotherapy (2009) Radiother Oncol, 91, pp. 427-432Werner-Wasik, M., Yorke, E., Deasy, J., Nam, J., Marks, L.B., Radiation dose-volume effects in the esophagus (2010) Int J Radiat Oncol Biol Phys, 76 (3), pp. S86-S93Kocak, Z., Borst, G.R., Zeng, J., Zhou, S., Hollis, R., Zhang, J., Evans, E.S., Marks, L.B., Prospective assessment of dosimetric/physiologic-based models for predicting radiation pneumonitis (2007) Int J Radiat Oncol Biol Phys, 67 (1), pp. 178-186Yorke, E.D., Jackson, A., Rosenzweig, K.E., Braban, L., Leibel, S.A., Ling, C.C., Correlation of dosimetric factors and radiation pneumonitis for non-small-cell lung cancer patients in a recently completed dose escalation study (2005) Int J Radiat Oncol Biol Phys, 63 (3), pp. 672-682Hope, A.J., Lindsay, P.E., El-Naga, I., Alaly, J.R., Vicic, M., Bradley, J.D., Deasy, G.O., Modeling radiation pneumonitis risk with clinical, dosimetric, and spatial parameters (2006) Int J Radiat Oncol Biol Phys, 65 (1), pp. 112-124Tsujino, K., Hirota, S., Endo, M., Obayashi, K., Kotani, Y., Satouchi, M., Kado, T., Takada, Y., Predictive value of dose-volume histogram parameters for predicting radiation pneumonitis after concurrent chemoradiation for lung cancer (2003) Int J Radiat Oncol Biol Phys, 55 (1), pp. 110-115Fay, M., Tan, A., Fisher, R., Mac, M.M., Wirth, A., Ball, D., Dose-volume histogram analysis as predictor of radiation pneumonitis in primary lung cancer patients treated with radiotherapy (2005) Int J Radiat Oncol Biol Phys, 61 (5), pp. 1355-1363Szabo, S., Ghosh, S.N., Fish, B.L., Bodiga, S., Tomic, R., Kumar, G., Morrow, N.V., Medhora, M., Cellular inflammatory infiltrate in pneumonitis induced by a single moderate dose of thoracic versus radiation in rats (2010) Radiat Res, 173 (4), pp. 545-556Dähn, D., Martell, J., Vorwerk, H., Hess, C.F., Becker, H., Jung, K., Hilgers, R., Christiansen, H., Influence of irradiated lung volumes on perioperative morbidity and mortality in patients after neoadjuvante radiochemotherapy for esophageal cancer (2010) Int J Radiat Oncol Biol Phys, 77 (1), pp. 44-52Ysayama, L., Lopes, L.R., Silva, A.M.O., Andreollo, N.A., The influence of the respiratory muscular training in the recovery of esophagectomies (2008) ABCD Arq Bras Cir Dig, 21 (2), pp. 61-64Nakamura, M., Iwahashi, M., Nakamori, M., Ishida, K., Naka, T., Iida, T., Katsuda, M., Yamaue, H., An analysis of the factors contributing to a reduction in the incidence of pulmonary complications following an esophagectomy for esophageal cancer (2008) Langenbecks Arch Surg, 393, pp. 127-13
    corecore