108 research outputs found

    Gas Electron Multipliers for the Antiproton Decelerator

    Full text link
    The new beam profile measurement for the Antiproton Decelerator (AD) at CERN is based on a single Gas Electron Multiplier (GEM) with a 2D readout structure. This detector is very light (~0.4% X0), and measures horizontal and vertical profiles directly in one plane. This overcomes the problems previously encountered with multi-wire proportional chambers for the same purpose, where beam interactions with the detector severely affect the obtained profiles. A prototype was installed and successfully tested in late 2010, with another five detectors now installed in the ASACUSA and AEGIS beam lines. This paper will provide a detailed description of the detector and discuss the results obtained.Comment: Paper presented at DIPAC 2011, Hambur

    Development of high gain GEM detectors

    Get PDF
    We describe systematic measurements carried out with single and double GEM detectors with printed circuit readout. The maximum safe operating gain has been measured at increasing radiation flux and under exposure to heavily ionizing tracks. Detection efficiency, localization accuracy and cluster size have been measured in a minimum ionizing particle beam. With a suitably configured readout electrode, fast, two-dimensional localization of radiation is demonstrated. (15 refs)

    Test of the two TOTEM TripleGEM Chambers assembled at G&A Engineering

    Get PDF
    In this note we report the results of the tests performed at CERN on the two TOTEM TripleGEM chambers assembled by a private company

    Development and test of large size GEM detectors

    Get PDF
    We discuss the main operating features of GEM detectors, optimized for use as trackers in a high radiation environment. The construction, tests and performances of large prototypes for the COMPASS experiment are also described, as well as the results of an exposure to very high intensity beams. (11 refs)

    Optimization of operation and test of large size GEM detectors

    Get PDF
    We describe basic development work aimed at the realization of large (~1000 cm2 active) detectors for the COMPASS experiment, based on the gas electron multiplier technology. Essentially a high-rate forward spectrometer, the experiment requires high accuracy tracking of scattered particles and light detectors, in order not to degrade mass resolution and particle identification. The choice of a double GEM structure with two-coordinate read-out fulfils the above requirements. Systematic studies confirm the required performances, with good safety margins for an operation in harsh environments. We discuss the design problems encountered in the construction of the large devices and the solutions adopted, together with preliminary results obtained with prototypes in the laboratory and in a high intensity beam

    Beam tests of the gas electron multiplier

    Get PDF
    We describe the results of systematic measurements, carried out with single and double GEM detectors with printed circuit read-out and having an active area 10x10 cm , both in the laboratory and in a high energy charged particles beam at CERN. Using fast analogue readout electronics, we demonstrate efficiencies for minimum ionizing particles close to 100%, with typical signal/noise ratios above 50 and up to 10 for the single and double GEM configuration, respectively, and a time resolution of 15 ns fwhm. Localization accuracies around 40 mm rms have been obtained for perpendicular tracks, degrading to 200 mm at 20° of incidence to the normal. Operated in a non-flammable gas mixture (argon-carbon dioxide), GEM detectors are robust, light and cheap to manufacture, and offer excellent performances and reliability suited for use in the harsh environments met at high luminosity colliders

    Progress with diamond over-coated microstrip gas chambers

    Get PDF
    We describe recent observations and measurements with Micro-Strip Gas Chambers coated, after manufacturing, with a thin diamond-like layer in order to increase their rate capability. Compared to the more widely used solution consisting in coating the insulating support with a conductive layer before photo-lithography (the so-called undercoating), over-coating has the advantage of avoiding possible problems with adherence of metals to the layer, damages during the etching process and reduced quality of the artwork resulting from imperfections or dust inclusions in the layer. Early tests have however indicated that, possibly because of damages to the layer due to electron and ion bombardment during the avalanche process, irreversible structural modifications and fatal breakdown could be encountered at very high integral radiation fluxes. The present paper summarizes these results, and describes recent developments demonstrating that a better choice of the parameters of the over-coat may allow to withstand the radiation doses anticipated for LHC detectors with the intrinsically simpler over-coating solution. We discuss also several possible applications of the use of thin, controlled resistivity layers for other families of detectors used or in development for CERNÂąs high luminosity collider

    Spherical GEMs for parallax-free detectors

    Full text link
    We developed a method to make GEM foils with a spherical geometry. Tests of this procedure and with the resulting spherical \textsc{gem}s are presented. Together with a spherical drift electrode, a spherical conversion gap can be formed. This would eliminate the parallax error for detection of x-rays, neutrons or UV photons when a gaseous converter is used. This parallax error limits the spatial resolution at wide scattering angles. The method is inexpensive and flexible towards possible changes in the design. We show advanced plans to make a prototype of an entirely spherical triple-GEM detector, including a spherical readout structure. This detector will have a superior position resolution, also at wide angles, and a high rate capability. A completely spherical gaseous detector has never been made before.Comment: Contribution to the 2009 IEEE Nuclear Science Symposium, Orlando, Florid

    Aging measurements with the gas electron multiplier (GEM)

    Get PDF
    Continuing previous aging measurements with detectors based on the Gas Electron Multiplier (GEM), a 31Ă—3131\times 31cm2^2 triple-GEM detector, as used in the small area tracking of the COMPASS experiment at CERN, was investigated. With a detector identical to those installed in the experiment, long-term, high-rate exposures to 8.98.9keV X-ray radiation were performed to study its aging properties. In standard operation conditions, with Ar:CO2_2 (70:30) filling and operated at an effective gain of 8.5â‹…1038.5\cdot 10^3, no change in gain and energy resolution is observed after collecting a total charge of 7mC/mm2^2, corresponding to seven years of normal operation. This observation confirms previous results demonstrating the relative insensitivity of GEM detectors to aging, even when manufactured with common materials

    The virtual cathode chamber

    Get PDF
    We describe the operating principle and the first experimental results obtained with gas micro-strip detectors realized with anodes only on the active side, the multiplying field being provided from the back-plane and drift electrodes. For high rate operation, the detector has to be implemented on electron conducting supports, with resistivity around 1011Ω^{11}\Omega cm. By construction, the ³Virtual Cathode Chamber² is not subjected to the possibility of discharges between anodes and cathodes, thus avoiding one of the most dangerous problems met with standard micro-strip chambers
    • …
    corecore