6 research outputs found

    Current-dependent ocular tilt reaction in deep brain stimulation of the subthalamic nucleus: Evidence for an incerto-interstitial pathway?

    No full text
    Background and purpose The aim was to characterize a combined vestibular, ocular motor and postural syndrome induced by deep brain stimulation (DBS) of the subthalamic nucleus in a patient with Parkinson's disease. Methods In a systematic DBS programming session, eye, head and trunk position in roll and pitch plane were documented as a function of stimulation amplitude and field direction. Repeat ocular coherence tomography was used to estimate ocular torsion. The interstitial nucleus of Cajal (INC), zona incerta (ZI) and ascending vestibular fibre tracts were segmented on magnetic resonance imaging using both individual and normative structural connectomic data. Thresholded symptom-associated volumes of tissue activated (VTA) were calculated based on documented stimulation parameters. Results Ipsilateral ocular tilt reaction and body lateropulsion as well as contralateral torsional nystagmus were elicited by the right electrode in a current-dependent manner and subsided after DBS deactivation. With increasing currents, binocular tonic upgaze and body retropulsion were observed. Symptoms were consistent with an irritative effect on the INC. Symptom-associated VTA was found to overlap with the dorsal ZI and the ipsilateral vestibulothalamic tract, while lying rather distant to the INC proper. A ZI-to-INC ‘incerto-interstitial’ tract with contact to the medial-uppermost portion of the VTA could be traced. Conclusion Unilateral stimulation of INC-related circuitry induces an ipsilateral vestibular, ocular motor and postural roll-plane syndrome, which converts into a pitch-plane syndrome when functional activation expands bilaterally. In this case, tractography points to an incerto-interstitial pathway, a tract previously only characterized in non-human primates. Directional current steering proved useful in managing this rare side effect

    Deep Brain Stimulation for Arm Tremor: A Randomized Trial Comparing Two Targets

    No full text
    Objective Deep brain stimulation (DBS) of the thalamic ventral intermediate nucleus (VIM) effectively suppresses arm tremor. Uncontrolled studies suggest the posterior subthalamic area (PSA) may be superior. We compared the intra-individual efficacy of VIM- versus PSA-DBS on tremor suppression and arm function. Methods We performed a randomized, double-blind, crossover trial at Oslo University Hospital in patients (18–80 years) with isolated or combined action tremor affecting at least one arm. Four-contact DBS leads were implanted (bi- or unilaterally) with a trajectory to cover the VIM (upper two contacts) and PSA (lower two contacts). Patients were randomized (1:1 ratio) post-surgery to: Group 1, VIM-stimulation months 0–3 (period 1), then PSA-stimulation months 4–6 (period 2); Group 2, PSA-stimulation first, then VIM-stimulation. Primary endpoint was the difference in improvement from baseline to the end of the VIM- versus PSA-period in the sum of the dominant arm tremor scores of the Fahn-Tolosa-Marin Tremor Rating Scale (FTMTRS), items 5/6 + 10−14. Results Forty-five patients were randomized to Group 1 (n = 23) or 2 (n = 22). In the primary endpoint per-protocol analysis (mixed model, n = 40), mean difference in the sum FTMTRS score improvement for the dominant arm was −2.65 points (95% CI −4.33 to −0.97; p = 0.002). The difference in favour of PSA stimulation was highly significant in period 2, but not period 1. Interpretation Our randomized trial demonstrated that PSA stimulation provided superior tremor suppression compared with VIM stimulation. A period effect reducing tremor for up to three months in both groups was most likely attributed to a post-surgery stun effect. ANN NEUROL 2022;91:585–60

    Deep Brain Stimulation for Tremor: Update on Long-Term Outcomes, Target Considerations and Future Directions

    Get PDF
    Deep brain stimulation (DBS) of the thalamic ventral intermediate nucleus is one of the main advanced neurosurgical treatments for drug-resistant tremor. However, not every patient may be eligible for this procedure. Nowadays, various other functional neurosurgical procedures are available. In particular cases, radiofrequency thalamotomy, focused ultrasound and radiosurgery are proven alternatives to DBS. Besides, other DBS targets, such as the posterior subthalamic area (PSA) or the dentato-rubro-thalamic tract (DRT), may be appraised as well. In this review, the clinical characteristics and pathophysiology of tremor syndromes, as well as long-term outcomes of DBS in different targets, will be summarized. The effectiveness and safety of lesioning procedures will be discussed, and an evidence-based clinical treatment approach for patients with drug-resistant tremor will be presented. Lastly, the future directions in the treatment of severe tremor syndromes will be elaborated

    Reduced Programming Time and Strong Symptom Control Even in Chronic Course Through Imaging-Based DBS Programming

    Get PDF
    Objectives: Deep brain stimulation (DBS) programming is based on clinical response testing. Our clinical pilot trial assessed the feasibility of image-guided programing using software depicting the lead location in a patient-specific anatomical model. Methods: Parkinson's disease patients with subthalamic nucleus-DBS were randomly assigned to standard clinical-based programming (CBP) or anatomical-based (imaging-guided) programming (ABP) in an 8-week crossover trial. Programming characteristics and clinical outcomes were evaluated. Results: In 10 patients, both programs led to similar motor symptom control (MDS-UPDRS III) after 4 weeks (medicationOFF/stimulationON; CPB: 18.27 ± 9.23; ABP: 18.37 ± 6.66). Stimulation settings were not significantly different, apart from higher frequency in the baseline program than CBP (p = 0.01) or ABP (p = 0.003). Time spent in a program was not significantly different (CBP: 86.1 ± 29.82%, ABP: 88.6 ± 29.0%). Programing time was significantly shorter (p = 0.039) with ABP (19.78 ± 5.86 min) than CBP (45.22 ± 18.32). Conclusion: Image-guided DBS programming in PD patients drastically reduces programming time without compromising symptom control and patient satisfaction in this small feasibility trial

    Machine versus physician-based programming of deep brain stimulation in isolated dystonia: A feasibility study

    No full text
    Background: Deep brain stimulation of the internal globus pallidus effectively alleviates dystonia motor symptoms. However, delayed symptom control and a lack of therapeutic biomarkers and a single pallidal sweetspot region complicates optimal programming. Postoperative management is complex, typically requiring multiple, lengthy follow-ups with an experienced physician – an important barrier to widespread adoption in medication-refractory dystonia patients. Objective: Here we prospectively tested the best machine-predicted programming settings in a dystonia cohort treated with GPi-DBS against the settings derived from clinical long-term care in a specialised DBS centre. Methods: Previously, we reconstructed an anatomical map of motor improvement probability across the pallidal region using individual stimulation volumes and clinical outcomes in dystonia patients. We used this to develop an algorithm that tests in silico thousands of putative stimulation settings in de novo patients after reconstructing an individual, image-based anatomical model of electrode positions, and suggests stimulation parameters with the highest likelihood of optimal symptom control. To test real-life application, our prospective study compared results in 10 patients against programming settings derived from long-term care. Results: In this cohort, dystonia symptom reduction was observed at 74.9 ± 15.3% with C-SURF programming as compared to 66.3 ± 16.3% with clinical programming (p < 0.012). The average total electrical energy delivered (TEED) was similar for both the clinical and C-SURF programming (262.0 μJ/s vs. 306.1 μJ/s respectively). Conclusion: Our findings highlight the clinical potential of machine-based programming in dystonia, which could markedly reduce the programming burden in postoperative management
    corecore