363 research outputs found

    Probing self-assembly dynamics by high speed-atomic force microscopy

    Get PDF
    Cellular life harbours a fascinating variety of complex processes and we are still at the beginning of our understanding of these processes. Atomic-scale reconstructions using crystallography or electron microscopy approaches have unveiled great views on cellular components such as proteins and higher-order proteinaceous assemblies. However, these static techniques do not reveal the dynamics of the studied constructs. Using High Speed-Atomic Force Microscopy (HS-AFM) we are now able to scrutinize the dynamics of molecular processes at the nanometre scale, in real time, in liquid. I will start off with discussing the principles and background of HS-AFM and discuss practicalities such as surface treatment and experimental approach. Next I will dive into the applications. Thereby, I will show how we are using the HS-AFM technique to study the fascinating physics of sub-cellular dynamics and biomimetic assembly processes. This will be illustrated by discussing assembly (and disassembly) of ESCRT-III protein complexes and HS-AFM visualization of the dynamics of supramolecular polymerization of synthetic self-replicators. Furthermore, the formation dynamics of 2D capsid protein lattices of human immunodeficiency virus (HIV) will be discussed, particularly revealing how complex the kinetics of viral self-assembly can be, with multiple assembly pathways and continuously occurring assembly and disassembly events. Finally, studies of nucleus formation and growth of hepatitis B virus (HBV) capsid protein complexes are shown revealing real time binding of capsid proteins and the dynamics of assembly initiation of HBV. Combining the insights from the static atomic-scale reconstructions with the dynamic molecular-scale HS-AFM experiments we are now finally able to provide a comprehensive vie

    Lipoprotein particles exhibit distinct mechanical properties

    Get PDF
    Lipoproteins (LPs) are micelle-like structures with a similar size to extracellular vesicles (EVs) and are therefore often co-isolated, as intensively discussed within the EV community. LPs from human blood plasma are of particular interest as they are responsible for the deposition of cholesterol ester and other fats in the artery, causing lesions, and eventually atherosclerosis. Plasma lipoproteins can be divided according to their size, density and composition into chylomicrons (CM), very-low-density lipoproteins (VLDL), low-density lipoproteins (LDL) and high-density lipoproteins (HDL). Here, we use atomic force microscopy for mechanical characterization of LPs. We show that the nanoindentation approach used for EV analysis can also be used to characterize LPs, revealing specific differences between some of the particles. Comparing LPs with each other, LDL exhibit a higher bending modulus as compared to CM and VLDL, which is likely related to differences in cholesterol and apolipoproteins. Furthermore, CM typically collapse on the surface after indentation and HDL exhibit a very low height after surface adhesion both being indications for the presence of LPs in an EV sample. Our analysis provides new systematic insights into the mechanical characteristics of LPs

    Physical virology:From virus self-assembly to particle mechanics

    Get PDF
    Viruses are highly ordered supramolecular complexes that have evolved to propagate by hijacking the host cell's machinery. Although viruses are very diverse, spreading through cells of all kingdoms of life, they share common functions and properties. Next to the general interest in virology, fundamental viral mechanisms are of growing importance in other disciplines such as biomedicine and (bio)nanotechnology. However, in order to optimally make use of viruses and virus-like particles, for instance as vehicle for targeted drug delivery or as building blocks in electronics, it is essential to understand their basic chemical and physical properties and characteristics. In this context, the number of studies addressing the mechanisms governing viral properties and processes has recently grown drastically. This review summarizes a specific part of these scientific achievements, particularly addressing physical virology approaches aimed to understand the self-assembly of viruses and the mechanical properties of viral particles. Using a physicochemical perspective, we have focused on fundamental studies providing an overview of the molecular basis governing these key aspects of viral systems. This article is categorized under: Biology-Inspired Nanomaterials > Protein and Virus-Based Structures Nanotechnology Approaches to Biology > Nanoscale Systems in Biology

    Active probing of the mechanical properties of biological and synthetic vesicles

    Get PDF
    BACKGROUND: The interest in mechanics of synthetic and biological vesicles has been continuously growing during the last decades. Liposomes serve as model systems for investigating fundamental membrane processes and properties. More recently, extracellular vesicles (EVs) have been investigated mechanically as well. EVs are widely studied in fundamental and applied sciences, but their material properties remained elusive until recently. Elucidating the mechanical properties of vesicles is essential to unveil the mechanisms behind a variety of biological processes, e.g. budding, vesiculation and cellular uptake mechanisms. SCOPE OF REVIEW: The importance of mechanobiology for studies of vesicles and membranes is discussed, as well as the different available techniques to probe their mechanical properties. In particular, the mechanics of vesicles and membranes as obtained by nanoindentation, micropipette aspiration, optical tweezers, electrodeformation and electroporation experiments is addressed. MAJOR CONCLUSIONS: EVs and liposomes possess an astonishing rich, diverse behavior. To better understand their properties, and for optimization of their applications in nanotechnology, an improved understanding of their mechanical properties is needed. Depending on the size of the vesicles and the specific scientific question, different techniques can be chosen for their mechanical characterization. GENERAL SIGNIFICANCE: Understanding the mechanical properties of vesicles is necessary to gain deeper insight in the fundamental biological mechanisms involved in vesicle generation and cellular uptake. This furthermore facilitates technological applications such as using vesicles as targeted drug delivery vehicles. Liposome studies provide insight into fundamental membrane processes and properties, whereas the role and functioning of EVs in biology and medicine is increasingly elucidated

    Visualization of single molecules building a viral capsid protein lattice through stochastic pathways

    Full text link
    Direct visualization of pathways followed by single molecules while they spontaneously self-assemble into supramolecular biological machines may provide fundamental knowledge to guide molecular therapeutics and the bottom-up design of nanomaterials and nanodevices. Here, high-speed atomic force microscopy is used to visualize self-assembly of the bidimensional lattice of protein molecules that constitutes the framework of the mature human immunodeficiency virus capsid. By real-time imaging of the assembly reaction, individual transient intermediates and reaction pathways followed by single molecules could be revealed. As when assembling a jigsaw puzzle, the capsid protein lattice is randomly built. Lattice patches grow independently from separate nucleation events whereby individual molecules follow different paths. Protein subunits can be added individually, while others form oligomers before joining a lattice or are occasionally removed from the latter. Direct real-time imaging of supramolecular selfassembly has revealed a complex, chaotic process involving multiple routes followed by individual molecules that are inaccessible to bulk (averaging) technique

    Physics of viral dynamics

    Get PDF
    Viral capsids are often regarded as inert structural units, but in actuality they display fascinating dynamics during different stages of their life cycle. With the advent of single-particle approaches and high-resolution techniques, it is now possible to scrutinize viral dynamics during and after their assembly and during the subsequent development pathway into infectious viruses. In this Review, the focus is on the dynamical properties of viruses, the different physical virology techniques that are being used to study them, and the physical concepts that have been developed to describe viral dynamics

    Visualization of Single Molecules Building a Viral Capsid Protein Lattice through Stochastic Pathways

    Get PDF
    Direct visualization of pathways followed by single molecules while they spontaneously self-assemble into supramolecular biological machines may provide fundamental knowledge to guide molecular therapeutics and the bottom-up design of nanomaterials and nanodevices. Here, high-speed atomic force microscopy is used to visualize self-assembly of the bidimensional lattice of protein molecules that constitutes the framework of the mature human immunodeficiency virus capsid. By real-time imaging of the assembly reaction, individual transient intermediates and reaction pathways followed by single molecules could be revealed. As when assembling a jigsaw puzzle, the capsid protein lattice is randomly built. Lattice patches grow independently from separate nucleation events whereby individual molecules follow different paths. Protein subunits can be added individually, while others form oligomers before joining a lattice or are occasionally removed from the latter. Direct real-time imaging of supramolecular self-assembly has revealed a complex, chaotic process involving multiple routes followed by individual molecules that are inaccessible to bulk (averaging) techniques
    • …
    corecore