17 research outputs found

    Combining role-play with interactive simulation to motivate informed climate action: Evidence from the World Climate simulation

    Get PDF
    Climate change communication efforts grounded in the information deficit model have largely failed to close the gap between scientific and public understanding of the risks posed by climate change. In response, simulations have been proposed to enable people to learn for themselves about this complex and politically charged topic. Here we assess the impact of a widely-used simulation, World Climate, which combines a socially and emotionally engaging role-play with interactive exploration of climate change science through the C-ROADS climate simulation model. Participants take on the roles of delegates to the UN climate negotiations and are challenged to create an agreement that meets international climate goals. Their decisions are entered into C-ROADS, which provides immediate feedback about expected global climate impacts, enabling them to learn about climate change while experiencing the social dynamics of negotiations. We assess the impact of World Climate by analyzing pre- and post-survey results from >2,000 participants in 39 sessions in eight nations. We find statistically significant gains in three areas: (i) knowledge of climate change causes, dynamics and impacts; (ii) affective engagement including greater feelings of urgency and hope; and (iii) a desire to learn and do more about climate change. Contrary to the deficit model, gains in urgency were associated with gains in participants’ desire to learn more and intent to act, while gains in climate knowledge were not. Gains were just as strong among American participants who oppose government regulation of free markets–a political ideology that has been linked to climate change denial in the US–suggesting the simulation’s potential to reach across political divides. The results indicate that World Climate offers a climate change communication tool that enables people to learn and feel for themselves, which together have the potential to motivate action informed by science.National Science Foundation (U.S.) (grant DUE-124558)National Science Foundation (U.S.) (grant ICEER-1701062

    Planktonic Microbes in the Gulf of Maine Area

    Get PDF
    In the Gulf of Maine area (GoMA), as elsewhere in the ocean, the organisms of greatest numerical abundance are microbes. Viruses in GoMA are largely cyanophages and bacteriophages, including podoviruses which lack tails. There is also evidence of Mimivirus and Chlorovirus in the metagenome. Bacteria in GoMA comprise the dominant SAR11 phylotype cluster, and other abundant phylotypes such as SAR86-like cluster, SAR116-like cluster, Roseobacter, Rhodospirillaceae, Acidomicrobidae, Flavobacteriales, Cytophaga, and unclassified Alphaproteobacteria and Gammaproteobacteria clusters. Bacterial epibionts of the dinoflagellate Alexandrium fundyense include Rhodobacteraceae, Flavobacteriaceae, Cytophaga spp., Sulfitobacter spp., Sphingomonas spp., and unclassified Bacteroidetes. Phototrophic prokaryotes in GoMA include cyanobacteria that contain chlorophyll (mainly Synechococcus), aerobic anoxygenic phototrophs that contain bacteriochlorophyll, and bacteria that contain proteorhodopsin. Eukaryotic microalgae in GoMA include Bacillariophyceae, Dinophyceae, Prymnesiophyceae, Prasinophyceae, Trebouxiophyceae, Cryptophyceae, Dictyochophyceae, Chrysophyceae, Eustigmatophyceae, Pelagophyceae, Synurophyceae, and Xanthophyceae. There are no records of Bolidophyceae, Aurearenophyceae, Raphidophyceae, and Synchromophyceae in GoMA. In total, there are records for 665 names and 229 genera of microalgae. Heterotrophic eukaryotic protists in GoMA include Dinophyceae, Alveolata, Apicomplexa, amoeboid organisms, Labrynthulida, and heterotrophic marine stramenopiles (MAST). Ciliates include Strombidium, Lohmaniella, Tontonia, Strobilidium, Strombidinopsis and the mixotrophs Laboea strobila and Myrionecta rubrum (ex Mesodinium rubra). An inventory of selected microbial groups in each of 14 physiographic regions in GoMA is made by combining information on the depth-dependent variation of cell density and the depth-dependent variation of water volume. Across the entire GoMA, an estimate for the minimum abundance of cell-based microbes is 1.7×1025 organisms. By one account, this number of microbes implies a richness of 105 to 106 taxa in the entire water volume of GoMA. Morphological diversity in microplankton is well-described but the true extent of taxonomic diversity, especially in the femtoplankton, picoplankton and nanoplankton – whether autotrophic, heterotrophic, or mixotrophic, is unknown

    Does replacing coal with wood lower CO[subscript 2] emissions? Dynamic lifecycle analysis of wood bioenergy

    No full text
    Bioenergy is booming as nations seek to cut their greenhouse gas emissions. The European Union declared biofuels to be carbon-neutral, triggering a surge in wood use. But do biofuels actually reduce emissions? A molecule of CO[subscript 2] emitted today has the same impact on radiative forcing whether it comes from coal or biomass. Biofuels can only reduce atmospheric CO[subscript 2] over time through post-harvest increases in net primary production (NPP). The climate impact of biofuels therefore depends on CO[subscript 2] emissions from combustion of biofuels versus fossil fuels, the fate of the harvested land and dynamics of NPP. Here we develop a model for dynamic bioenergy lifecycle analysis. The model tracks carbon stocks and fluxes among the atmosphere, biomass, and soils, is extensible to multiple land types and regions, and runs in ≈1s, enabling rapid, interactive policy design and sensitivity testing. We simulate substitution of wood for coal in power generation, estimating the parameters governing NPP and other fluxes using data for forests in the eastern US and using published estimates for supply chain emissions. Because combustion and processing efficiencies for wood are less than coal, the immediate impact of substituting wood for coal is an increase in atmospheric CO[subscript 2] relative to coal. The payback time for this carbon debt ranges from 44-104 years after clearcut, depending on forest type- A ssuming the land remains forest. Surprisingly, replanting hardwood forests with fast-growing pine plantations raises the CO[subscript 2] impact of wood because the equilibrium carbon density of plantations is lower than natural forests. Further, projected growth in wood harvest for bioenergy would increase atmospheric CO[subscript 2] for at least a century because new carbon debt continuously exceeds NPP. Assuming biofuels are carbon neutral may worsen irreversible impacts of climate change before benefits accrue. Instead, explicit dynamic models should be used to assess the climate impacts of biofuels.National Science Foundation (U.S.) (Grant DUE-124558)National Science Foundation (U.S.) (Grant ICER-1701062

    Reply to comment on ‘Does replacing coal with wood lower CO₂ emissions? Dynamic lifecycle analysis of wood bioenergy'

    No full text
    We respond to Prisley et al's (2018 Environ. Res. Lett. 13 128002) critique of Sterman et al (2018 Environ. Res. Lett. 13 015007), which found that using wood to produce electricity can worsen climate change at least through 2100, even if wood displaces coal. The result arises because (1) wood generates more COâ‚‚/kWh than coal, creating an initial carbon debt; (2) regrowth of harvested land can remove COâ‚‚ from the atmosphere, but takes time and is not certain; and (3) until the carbon debt is repaid, atmospheric COâ‚‚ is higher, increasing radiative forcing and worsening climate change long after the initial carbon debt is repaid by new growth. We correct several errors in Prisley et al's critique, and show that our results are robust to the harvest and land management practices they prefer.National Science Foundation (U.S.) (DUE-124558)National Science Foundation (U.S.) (grant ICER-1701062

    Phylogenetic Diversity and Specificity of Bacteria Closely Associated with Alexandrium spp. and Other Phytoplankton

    No full text
    While several studies have suggested that bacterium-phytoplankton interactions have the potential to dramatically influence harmful algal bloom dynamics, little is known about how bacteria and phytoplankton communities interact at the species composition level. The objective of the current study was to determine whether there are specific associations between diverse phytoplankton and the bacteria that co-occur with them. We determined the phylogenetic diversity of bacterial assemblages associated with 10 Alexandrium strains and representatives of the major taxonomic groups of phytoplankton in the Gulf of Maine. For this analysis we chose xenic phytoplankton cultures that (i) represented a broad taxonomic range, (ii) represented a broad geographic range for Alexandrium spp. isolates, (iii) grew under similar cultivation conditions, (iv) had a minimal length of time since the original isolation, and (v) had been isolated from a vegetative phytoplankton cell. 16S rRNA gene fragments of most Bacteria were amplified from DNA extracted from cultures and were analyzed by denaturing gradient gel electrophoresis and sequencing. A greater number of bacterial species were shared by different Alexandrium cultures, regardless of the geographic origin, than by Alexandrium species and nontoxic phytoplankton from the Gulf of Maine. In particular, members of the Roseobacter clade showed a higher degree of association with Alexandrium than with other bacterial groups, and many sequences matched sequences reported to be associated with other toxic dinoflagellates. These results provide evidence for specificity in bacterium-phytoplankton associations
    corecore