5 research outputs found

    Bounds on the Number of Irreducible Semigroups of Fixed Frobenius Number

    Get PDF
    In 2011, Blanco and Rosales gave an algorithm for constructing a directed tree graph whose vertices are the irreducible numerical semigroups with a fixed Frobenius number. Laird and Martinez in 2013 studied the levels of these trees and conjectured what their heights might be. In this paper, we give an exposition on irreducible numerical semigroups. We also present some data supporting the conjecture of Laird and Martinez, and give a lower and upper bound on the number of irreducible numerical semigroups with fixed Frobenius number

    ZerNet: Convolutional Neural Networks on Arbitrary Surfaces via Zernike Local Tangent Space Estimation

    Full text link
    In this paper, we propose a novel formulation to extend CNNs to two-dimensional (2D) manifolds using orthogonal basis functions, called Zernike polynomials. In many areas, geometric features play a key role in understanding scientific phenomena. Thus, an ability to codify geometric features into a mathematical quantity can be critical. Recently, convolutional neural networks (CNNs) have demonstrated the promising capability of extracting and codifying features from visual information. However, the progress has been concentrated in computer vision applications where there exists an inherent grid-like structure. In contrast, many geometry processing problems are defined on curved surfaces, and the generalization of CNNs is not quite trivial. The difficulties are rooted in the lack of key ingredients such as the canonical grid-like representation, the notion of consistent orientation, and a compatible local topology across the domain. In this paper, we prove that the convolution of two functions can be represented as a simple dot product between Zernike polynomial coefficients; and the rotation of a convolution kernel is essentially a set of 2-by-2 rotation matrices applied to the coefficients. As such, the key contribution of this work resides in a concise but rigorous mathematical generalization of the CNN building blocks

    Evaluating the Effects of SARS-CoV-2 Spike Mutation D614G on Transmissibility and Pathogenicity.

    Get PDF
    Global dispersal and increasing frequency of the SARS-CoV-2 spike protein variant D614G are suggestive of a selective advantage but may also be due to a random founder effect. We investigate the hypothesis for positive selection of spike D614G in the United Kingdom using more than 25,000 whole genome SARS-CoV-2 sequences. Despite the availability of a large dataset, well represented by both spike 614 variants, not all approaches showed a conclusive signal of positive selection. Population genetic analysis indicates that 614G increases in frequency relative to 614D in a manner consistent with a selective advantage. We do not find any indication that patients infected with the spike 614G variant have higher COVID-19 mortality or clinical severity, but 614G is associated with higher viral load and younger age of patients. Significant differences in growth and size of 614G phylogenetic clusters indicate a need for continued study of this variant

    Evaluating the Effects of SARS-CoV-2 Spike Mutation D614G on Transmissibility and Pathogenicity

    Get PDF
    Global dispersal and increasing frequency of the SARS-CoV-2 spike protein variant D614G are suggestive of a selective advantage but may also be due to a random founder effect. We investigate the hypothesis for positive selection of spike D614G in the United Kingdom using more than 25,000 whole genome SARS-CoV-2 sequences. Despite the availability of a large dataset, well represented by both spike 614 variants, not all approaches showed a conclusive signal of positive selection. Population genetic analysis indicates that 614G increases in frequency relative to 614D in a manner consistent with a selective advantage. We do not find any indication that patients infected with the spike 614G variant have higher COVID-19 mortality or clinical severity, but 614G is associated with higher viral load and younger age of patients. Significant differences in growth and size of 614G phylogenetic clusters indicate a need for continued study of this variant

    Evaluating the Effects of SARS-CoV-2 Spike Mutation D614G on Transmissibility and Pathogenicity

    Get PDF
    Global dispersal and increasing frequency of the SARS-CoV-2 spike protein variant D614G are suggestive of a selective advantage but may also be due to a random founder effect. We investigate the hypothesis for positive selection of spike D614G in the United Kingdom using more than 25,000 whole genome SARS-CoV-2 sequences. Despite the availability of a large dataset, well represented by both spike 614 variants, not all approaches showed a conclusive signal of positive selection. Population genetic analysis indicates that 614G increases in frequency relative to 614D in a manner consistent with a selective advantage. We do not find any indication that patients infected with the spike 614G variant have higher COVID-19 mortality or clinical severity, but 614G is associated with higher viral load and younger age of patients. Significant differences in growth and size of 614G phylogenetic clusters indicate a need for continued study of this variant
    corecore