361 research outputs found

    Transgenic overexpression of miR-133a in skeletal muscle

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>MicroRNAs (miRNAs) are a class of non-coding regulatory RNAs of ~22 nucleotides in length. miRNAs regulate gene expression post-transcriptionally, primarily by associating with the 3' untranslated region (UTR) of their regulatory target mRNAs. Recent work has begun to reveal roles for miRNAs in a wide range of biological processes, including cell proliferation, differentiation and apoptosis. Many miRNAs are expressed in cardiac and skeletal muscle, and dysregulated miRNA expression has been correlated with muscle-related disorders. We have previously reported that the expression of muscle-specific miR-1 and miR-133 is induced during skeletal muscle differentiation and miR-1 and miR-133 play central regulatory roles in myoblast proliferation and differentiation in vitro.</p> <p>Methods</p> <p>In this study, we measured the expression of miRNAs in the skeletal muscle of mdx mice, an animal model for human muscular dystrophy. We also generated transgenic mice to overexpress miR-133a in skeletal muscle.</p> <p>Results</p> <p>We examined the expression of miRNAs in the skeletal muscle of <it>mdx </it>mice. We found that the expression of muscle miRNAs, including miR-1a, miR-133a and miR-206, was up-regulated in the skeletal muscle of <it>mdx </it>mice. In order to further investigate the function of miR-133a in skeletal muscle in vivo, we have created several independent transgenic founder lines. Surprisingly, skeletal muscle development and function appear to be unaffected in miR-133a transgenic mice.</p> <p>Conclusions</p> <p>Our results indicate that miR-133a is dispensable for the normal development and function of skeletal muscle.</p

    Markers of cerebral damage during delirium in elderly patients with hip fracture

    Get PDF
    BACKGROUND: S100B protein and Neuron Specific Enolase (NSE) can increase due to brain cell damage and/or increased permeability of the blood-brain-barrier. Elevation of these proteins has been shown after various neurological diseases with cognitive dysfunction. Delirium is characterized by temporal cognitive deficits and is an important risk factor for dementia. The aim of this study was to compare the level of S100B and NSE of patients before, during and after delirium with patients without delirium and investigate the possible associations with different subtypes of delirium. METHODS: The study population were patients aged 65 years or more acutely admitted after hip fracture. Delirium was diagnosed by the Confusion Assessment Method and the subtype by Delirium Symptom interview. In maximal four serum samples per patient S100B and NSE levels were determined by electrochemiluminescence immunoassay. RESULTS: Of 120 included patients with mean age 83.9 years, 62 experienced delirium. Delirious patients had more frequently pre-existing cognitive impairment (67% vs. 18%, p<0.001). Comparing the first samples during delirium to samples of non-delirious patients, a difference was observed in S100B (median 0.16 versus 0.10 ug/L, p=<0.001), but not in NSE (median 11.7 versus 11.7 ng/L, p=0.97). Delirious state (before, during, after) (p<0.001), day of blood withdrawal (p<0.001), pre- or postoperative status (p=0.001) and type of fracture (p=0.036) were all associated with S100B level. The highest S100B levels were found 'during' delirium. S100B levels 'before' and 'after' delirium were still higher than those from 'non-delirious' patients. No significant difference in S100B (p=0.43) or NSE levels (p=0.41) was seen between the hyperactive, hypoactive and mixed subtype of delirium. CONCLUSIONS: Delirium was associated with increased level of S100B which could indicate cerebral damage either due to delirium or leading to delirium. The possible association between higher levels of S100B during delirium and the higher risk of developing dementia after delirium is an interesting field for future research. More studies are needed to elucidate the role of S100B proteins in the pathophysiological pathway leading to delirium and to investigate its possibility as biomarker for deliriu

    Increased mitochondrial activity in a novel IDH1-R132H mutant human oligodendroglioma xenograft model: in situ detection of 2-HG and α-KG

    Get PDF
    Background: Point mutations in genes encoding NADP+-dependent isocitrate dehydrogenases (especially IDH1) are common in lower grade diffuse gliomas and secondary glioblastomas and occur early during tumor development. The contribution of these mutations to gliomagenesis is not completely understood and research is hampered by the lack of relevant tumor models. We previously described the development of the patient-derived high-grade oligodendroglioma xenograft model E478 that carries the commonly occurring IDH1-R132H mutation. We here report on the analyses of E478 xenografts at the genetic, histologic and metabolic level. Results: LC-MS and in situ mass spectrometric imaging by LESA-nano ESI-FTICR revealed high levels of the proposed oncometabolite D-2-hydroxyglutarate (D-2HG), the product of enzymatic conversion of α-ketoglutarate (α-KG) by IDH1-R132H, in the tumor but not in surrounding brain parenchyma. α-KG levels and total NADP+-dependent IDH activity were similar in IDH1-mutant and -wildtype xenografts, demonstrating that IDH1-mutated cancer cells maintain α-KG levels. Interestingly, IDH1-mutant tumor cells in vivo present with high densities of mitochondria and increased levels of mitochondrial activity as compared to IDH1-wildtype xenografts. It is not yet clear whether this altered mitochondrial activity is a driver or a consequence of tumorigenesis. Conclusions: The oligodendroglioma model presented here is a valuable model for further functional elucidation of the effects of IDH1 mutations on tumor metabolism and may aid in the rational development of novel therapeutic strategies for the large subgroup of gliomas carrying IDH1 mutations

    Cardiomyocyte overexpression of miR-27b induces cardiac hypertrophy and dysfunction in mice

    Get PDF
    Recent studies have begun to reveal critical roles of microRNAs (miRNAs) in the pathogenesis of cardiac hypertrophy and dysfunction. In this study, we tested whether a transforming growth factor-β (TGF-β)-regulated miRNA played a pivotal role in the development of cardiac hypertrophy and heart failure (HF). We observed that miR-27b was upregulated in hearts of cardiomyocyte-specific Smad4 knockout mice, which developed cardiac hypertrophy. In vitro experiments showed that the miR-27b expression could be inhibited by TGF-β1 and that its overexpression promoted hypertrophic cell growth, while the miR-27b suppression led to inhibition of the hypertrophic cell growth caused by phenylephrine (PE) treatment. Furthermore, the analysis of transgenic mice with cardiomyocyte-specific overexpression of miR-27b revealed that miR-27b overexpression was sufficient to induce cardiac hypertrophy and dysfunction. We validated the peroxisome proliferator-activated receptor-γ (PPAR-γ) as a direct target of miR-27b in cardiomyocyte. Consistently, the miR-27b transgenic mice displayed significantly lower levels of PPAR-γ than the control mice. Furthermore, in vivo silencing of miR-27b using a specific antagomir in a pressure-overload-induced mouse model of HF increased cardiac PPAR-γ expression, attenuated cardiac hypertrophy and dysfunction. The results of our study demonstrate that TGF-β1-regulated miR-27b is involved in the regulation of cardiac hypertrophy, and validate miR-27b as an efficient therapeutic target for cardiac diseases

    Elevated miR-499 Levels Blunt the Cardiac Stress Response

    Get PDF
    The heart responds to myriad stresses by well-described transcriptional responses that involve long-term changes in gene expression as well as more immediate, transient adaptations. MicroRNAs quantitatively regulate mRNAs and thus may affect the cardiac transcriptional output and cardiac function. Here we investigate miR-499, a microRNA embedded within a ventricular-specific myosin heavy chain gene, which is expressed in heart and skeletal muscle.We assessed miR-499 expression in human tissue to confirm its potential relevance to human cardiac gene regulation. Using a transgenic mouse model, we found that elevated miR-499 levels caused cellular hypertrophy and cardiac dysfunction in a dose-dependent manner. Global gene expression profiling revealed altered levels of the immediate early stress response genes (Egr1, Egr2 and Fos), ß-myosin heavy chain (Myh7), and skeletal muscle actin (Acta1). We verified the effect of miR-499 on the immediate early response genes by miR-499 gain- and loss-of-function in vitro. Consistent with a role for miR-499 in blunting the response to cardiac stress, asymptomatic miR-499-expressing mice had an impaired response to pressure overload and accentuated cardiac dysfunction.Elevated miR-499 levels affect cardiac gene expression and predispose to cardiac stress-induced dysfunction. miR-499 may titrate the cardiac response to stress in part by regulating the immediate early gene response

    Cerebral aneurysm exclusion by CT angiography based on subarachnoid hemorrhage pattern: a retrospective study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To identify patients with spontaneous subarachnoid hemorrhage for whom CT angiography alone can exclude ruptured aneurysms.</p> <p>Methods</p> <p>An observational retrospective review was carried out of all consecutive patients with non-traumatic subarachnoid hemorrhage who underwent both CT angiography and catheter angiography to exclude an aneurysm. CT angiography negative cases (no aneurysm) were classified according to their CT hemorrhage pattern as "aneurismal", "perimesencephalic" or as "no-hemorrhage."</p> <p>Results</p> <p>Two hundred and forty-one patients were included. A CT angiography aneurysm detection sensitivity and specificity of 96.4% and 96.0% were observed. All 35 cases of perimesencephalic or no-hemorrhage out of 78 CT angiography negatives also had negative angiography findings.</p> <p>Conclusions</p> <p>CT angiography is self-reliant to exclude ruptured aneurysms when either a perimesencephalic hemorrhage or no-hemorrhage pattern is identified on the CT within a week of symptom onset.</p

    miRNAs at the heart of the matter

    Get PDF
    Cardiovascular disease is among the main causes of morbidity and mortality in developed countries. The pathological process of the heart is associated with altered expression profile of genes that are important for cardiac function. MicroRNAs (miRNAs) have emerged as one of the central players of gene expression regulation. The implications of miRNAs in the pathological process of cardiovascular system have recently been recognized, representing the most rapidly evolving research field. Here, we summarize and analyze the currently available data from our own laboratory and other groups, providing a comprehensive overview of miRNA function in the heart, including a brief introduction of miRNA biology, expression profile of miRNAs in cardiac tissue, role of miRNAs in cardiac hypertrophy and heart failure, the arrhythmogenic potential of miRNAs, the involvement of miRNAs in vascular angiogenesis, and regulation of cardiomyocyte apoptosis by miRNAs. The target genes and signaling pathways linking the miRNAs to cardiovascular disease are highlighted. The applications of miRNA interference technologies for manipulating miRNA expression, stability, and function as new strategies for molecular therapy of human disease are evaluated. Finally, some specific issues related to future directions of the research on miRNAs relevant to cardiovascular disease are pinpointed and speculated

    The Ups and Downs of Mutation Frequencies during Aging Can Account for the Apert Syndrome Paternal Age Effect

    Get PDF
    Apert syndrome is almost always caused by a spontaneous mutation of paternal origin in one of two nucleotides in the fibroblast growth factor receptor 2 gene (FGFR2). The incidence of this disease increases with the age of the father (paternal age effect), and this increase is greater than what would be expected based on the greater number of germ-line divisions in older men. We use a highly sensitive PCR assay to measure the frequencies of the two causal mutations in the sperm of over 300 normal donors with a wide range of ages. The mutation frequencies increase with the age of the sperm donors, and this increase is consistent with the increase in the incidence rate. In both the sperm data and the birth data, the increase is non-monotonic. Further, after normalizing for age, the two Apert syndrome mutation frequencies are correlated within individual sperm donors. We consider a mathematical model for germ-line mutation which reproduces many of the attributes of the data. This model, with other evidence, suggests that part of the increase in both the sperm data and the birth data is due to selection for mutated premeiotic cells. It is likely that a number of other genetic diseases have similar features

    Results of noninvasive ventilation in very old patients

    Get PDF
    International audienceABSTRACT: BACKGROUND: Noninvasive ventilation (NIV) is frequently used for the management of acute respiratory failure (ARF) in very old patients (>80 years), often in the context of a do-not-intubate order (DNI). We aimed to determine its efficacy and long-term outcome. METHODS: Prospective cohort of all patients admitted to the medical ICU of a tertiary hospital during a 2-year period and managed using NIV. Characteristics of patients, context of NIV, and treatment intensity were compared for very old and younger patients. Six-month survival and functional status were assessed in very old patients. RESULTS: During the study period, 1,019 patients needed ventilatory support and 376 (37%) received NIV. Among them, 163 (16%) very old patients received ventilatory support with 60% of them managed using NIV compared with 32% of younger patients (p < 0.0001). Very old patients received NIV more frequently with DNI than in younger patients (40% vs. 8%). Such cases were associated with high mortality for both very old and younger patients. Hospital mortality was higher in very old than in younger patients but did not differ when NIV was used for cardiogenic pulmonary edema or acute-on-chronic respiratory failure (20% vs. 15%) and in postextubation (15% vs. 17%) out of a context of DNI. Six-month mortality was 51% in very old patients, 67% for DNI patients, and 77% in case of NIV failure and endotracheal intubation. Of the 30 hospital survivors, 22 lived at home and 13 remained independent for activities of daily living. CONCLUSIONS: Very old patients managed using NIV have an overall satisfactory 6-month survival and functional status, except for endotracheal intubation after NIV failure

    Effective Rheology of Bubbles Moving in a Capillary Tube

    Full text link
    We calculate the average volumetric flux versus pressure drop of bubbles moving in a single capillary tube with varying diameter, finding a square-root relation from mapping the flow equations onto that of a driven overdamped pendulum. The calculation is based on a derivation of the equation of motion of a bubble train from considering the capillary forces and the entropy production associated with the viscous flow. We also calculate the configurational probability of the positions of the bubbles.Comment: 4 pages, 1 figur
    corecore