313 research outputs found

    Improved KL->pi e nu Form Factor and Phase Space Integral with Reduced Model Uncertainty

    Full text link
    Using the published KTeV sample of 2 million KL-> pi e nu decays and a new form factor expansion with a rigorous bound on higher order terms, we present a new determination of the KL->pi e nu form factor and phase space integral. Compared to the previous KTeV result, the uncertainty in the new form factor expansion is negligible and results in an overall uncertainty in the phase space integral (IKe) that is a factor of two smaller: IKe = 0.15392 +- 0.00048 \.Comment: 3 pages, 2 figures, submitted to PRD Rapid Communicatio

    Measurements of the Decay KLe+eγK_L \to e^+e^-\gamma

    Full text link
    The E799-II (KTeV) experiment at Fermilab has collected 83262 KLe+eγK_L \to e^+e^-\gamma events above a background of 79 events. We measure a decay width, normalized to the KLπ0π0πD0K_L \to \pi^0\pi^0\pi^0_D (\pi^0 \to \gamma\gamma, \pi^0 to \gamma\gamma, \pi^0_D \to e^+e^-\gamma) decay width, of Γ(\Gamma(K_L \to e^+e^-\gamma)/Γ(KLπ0π0πD0)=(1.3302±0.0046stat±0.0102syst)×103)/\Gamma(K_L \to \pi^0\pi^0\pi^0_D) = (1.3302 \pm 0.0046_{stat} \pm 0.0102_{syst}) \times 10^{-3}. We also measure parameters of two KLγγK_L \gamma^{\ast}\gamma form factor models. In the Bergstrom, Masso, and Singer (BMS) parametrization, we find \caks = -0.517 \pm 0.030_{stat} \pm 0.022_{syst}. We separately fit for the first parameter of the D'Ambrosio, Isidori, and Portoles (DIP) model and find \adip = -1.729 \pm 0.043_{stat} \pm 0.028_{syst}.Comment: 5 pages, 3 figures, submitted to PR

    Search for the Rare Decay K_{L}\to\pi^{0}\pi^{0}\gamma

    Full text link
    The KTeV E799 experiment has conducted a search for the rare decay KLπ0π0γK_{L}\to\pi^{0}\pi^{0}\gamma via the topology KLπ0πD0γK_{L}\to\pi^{0}\pi^{0}_D\gamma (where πD0γe+e\pi^0_D\to\gamma e^+e^-). Due to Bose statistics of the π0\pi^0 pair and the real nature of the photon, the KLπ0π0γK_{L}\to\pi^{0}\pi^{0}\gamma decay is restricted to proceed at lowest order by the CP conserving direct emission (DE) of an E2 electric quadrupole photon. The rate of this decay is interesting theoretically since chiral perturbation theory predicts that this process vanishes at level O(p4)O(p^4). Therefore, this mode probes chiral perturbation theory at O(p6)O(p^6). In this paper we report a determination of an upper limit of 2.43×1072.43\times 10^{-7} (90% CL) for KLπ0π0γK_{L}\to\pi^{0}\pi^{0}\gamma. This is approximately a factor of 20 lower than previous results.Comment: six pages and six figures in the submission. Reformatted for Physics Review

    Detailed Study of the KL -> 3pi0 Dalitz Plot

    Get PDF
    Using a sample of 68 million KL -> 3pi0 decays collected in 1996-1999 by the KTeV (E832) experiment at Fermilab, we present a detailed study of the KL -> 3pi0 Dalitz plot density. We report the first observation of interference from KL->pi+pi-pi0 decays in which pi+pi- rescatters to 2pi0 in a final-state interaction. This rescattering effect is described by the Cabibbo-Isidori model, and it depends on the difference in pion scattering lengths between the isospin I=0 and I=2 states, a0-a2. Using the Cabibbo-Isidori model, we present the first measurement of the KL-> 3pi0 quadratic slope parameter that accounts for the rescattering effect.Comment: accepted by Phys. Rev

    Search for the Rare Decays KL->pi0pi0mu+mu- and KL->pi0pi0X0->pi0pi0mu+mu-

    Full text link
    The KTeV E799 experiment has conducted a search for the rare decays KL->pi0pi0mu+mu- and KL->pi0pi0X0->pi0pi0mu+mu-, where the X0 is a possible new neutral boson that was reported by the HyperCP experiment with a mass of (214.3 pm 0.5) MeV/c^{2}. We find no evidence for either decay. We obtain upper limits of Br(KL->pi0pi0X0->pi0pi0mu+mu-) pi0pi0mu+mu-) < 9.2 x 10^{-11} at the 90% confidence level. This result rules out the pseudoscalar X0 as an explanation of the HyperCP result under the scenario that the \bar{d}sX0 coupling is completely real

    Determination of the Parity of the Neutral Pion via the Four-Electron Decay

    Full text link
    We present a new determination of the parity of the neutral pion via the double Dalitz decay pi^0 -> e+ e- e+ e-. Our sample, which consists of 30511 candidate decays, was collected from K_L -> pi0 pi0 pi0 decays in flight at the KTeV-E799 experiment at Fermi National Accelerator Laboratory. We confirm the negative pi^0 parity, and place a limit on scalar contributions to the pi^0 -> e+ e- e+ e- decay amplitude of less than 3.3% assuming CPT conservation. The pi^0 gamma* gamma* form factor is well described by a momentum-dependent model with a slope parameter fit to the final state phase space distribution. Additionally, we have measured the branching ratio of this mode to be B(pi^0 -> e+ e- e+ e-) = (3.26 +- 0.18) x 10^(-5).Comment: 5 pages, 4 figures. Typographical error in radiative branching ratio (Eq. 6) correcte

    Measurement of the rare decay pi0 -> e+ e-

    Get PDF
    The branching ratio of the rare decay pi0 -> e+ e- has been measured precisely, using the complete data set from the KTeV E799-II experiment at Fermilab. We observe 794 candidate pi0 -> e+ e- events using K0_L -> 3pi0 as a source of tagged pi0's. The expected background is 52.7 +- 11.2 events, predominantly from high e+ e- mass pi0 -> e+ e- gamma decays. We have measured B[(pi0 -> e+ e-), (m_e+e-/m_pi0)^2 > 0.95] = 6.44 +- 0.25(stat) +- 0.22(syst) x10^(-8), which is above the unitary bound from pi0 -> gamma gamma and within the range of theoretical expectations from the standard model.Comment: 6 pages, 4 figure

    The Majorana experiment: an ultra-low background search for neutrinoless double-beta decay

    Full text link
    The observation of neutrinoless double-beta decay would resolve the Majorana nature of the neutrino and could provide information on the absolute scale of the neutrino mass. The initial phase of the Majorana experiment, known as the Demonstrator, will house 40 kg of Ge in an ultra-low background shielded environment at the 4850' level of the Sanford Underground Laboratory in Lead, SD. The objective of the Demonstrator is to determine whether a future 1-tonne experiment can achieve a background goal of one count per tonne-year in a narrow region of interest around the 76Ge neutrinoless double-beta decay peak.Comment: Presentation for the Rutherford Centennial Conference on Nuclear Physic
    corecore