95 research outputs found

    Reaction and proton-removal cross sections of 6^6Li, 7^7Be, 10^{10}B, 9,10,11^{9,10,11}C, ^{12N, 13,15^{13,15}O and 17^{17}Ne on Si at 15 to 53 MeV/nucleon

    Full text link
    Excitation functions for total reaction cross sections, σR\sigma_R, were measured for the light, mainly proton-rich nuclei 6^6Li, 7^7Be, 10^{10}B, 9,10,11^{9,10,11}C, 12^{12}N, 13,15^{13,15}O, and 17^{17}Ne incident on a Si telescope at energies between 15 and 53 MeV/nucleon. The telescope served as target, energy degrader and detector. Proton-removal cross sections, σ2p\sigma_{2p} for 17^{17}Ne and σp\sigma_p for most of the other projectiles, were also measured. The strong absorption model reproduces the AA-dependence of σR\sigma_R, but not the detailed structure. Glauber multiple scattering theory and the JLM folding model provided improved descriptions of the measured σR\sigma_R values. rmsrms radii, extracted from the measured σR\sigma_R using the optical limit of Glauber theory, are in good agreement with those obtained from high energy data. One-proton removal reactions are described using an extended Glauber model, incorporating second order noneikonal corrections, realistic single particle densities, and spectroscopic factors from shell model calculations.Comment: 16 pages, 6 figure

    On‐line monitoring of radiotherapy beams: Experimental results with proton beams

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/135090/1/mp8491.pd

    The Buffer Gas Beam: An Intense, Cold, and Slow Source for Atoms and Molecules

    Get PDF
    Beams of atoms and molecules are stalwart tools for spectroscopy and studies of collisional processes. The supersonic expansion technique can create cold beams of many species of atoms and molecules. However, the resulting beam is typically moving at a speed of 300-600 m/s in the lab frame, and for a large class of species has insufficient flux (i.e. brightness) for important applications. In contrast, buffer gas beams can be a superior method in many cases, producing cold and relatively slow molecules in the lab frame with high brightness and great versatility. There are basic differences between supersonic and buffer gas cooled beams regarding particular technological advantages and constraints. At present, it is clear that not all of the possible variations on the buffer gas method have been studied. In this review, we will present a survey of the current state of the art in buffer gas beams, and explore some of the possible future directions that these new methods might take

    Candidate gene analysis of spontaneous preterm delivery: New insights from re-analysis of a case-control study using case-parent triads and control-mother dyads

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Spontaneous preterm delivery (PTD) has a multifactorial etiology with evidence of a genetic contribution to its pathogenesis. A number of candidate gene case-control studies have been performed on spontaneous PTD, but the results have been inconsistent, and do not fully assess the role of how two genotypes can impact outcome. To elucidate this latter point we re-analyzed data from a previously published case-control candidate gene study, using a case-parent triad design and a hybrid design combining case-parent triads and control-mother dyads. These methods offer a robust approach to genetic association studies for PTD compared to traditional case-control designs.</p> <p>Methods</p> <p>The study participants were obtained from the Norwegian Mother and Child Cohort Study (MoBa). A total of 196 case triads and 211 control dyads were selected for the analysis. A case-parent triad design as well as a hybrid design was used to analyze 1,326 SNPs from 159 candidate genes. We compared our results to those from a previous case-control study on the same samples. Haplotypes were analyzed using a sliding window of three SNPs and a pathway analysis was performed to gain biological insight into the pathophysiology of preterm delivery.</p> <p>Results</p> <p>The most consistent significant fetal gene across all analyses was COL5A2. The functionally similar COL5A1 was significant when combining fetal and maternal genotypes. PON1 was significant with analytical approaches for single locus association of fetal genes alone, but was possibly confounded by maternal effects. Focal adhesion (hsa04510), Cell Communication (hsa01430) and ECM receptor interaction (hsa04512) were the most constant significant pathways.</p> <p>Conclusion</p> <p>This study suggests a fetal association of COL5A2 and a combined fetal-maternal association of COL5A1 with spontaneous PTD. In addition, the pathway analysis implied interactions of genes affecting cell communication and extracellular matrix.</p

    Molecular insights into the premature aging disease progeria

    Get PDF
    • 

    corecore