58 research outputs found
Effect of gravity on halogenated hydrocarbon flame retardant effectiveness
Flammability limits, burning velocities, and minimum ignition energies under initially quiescent conditions were measured for stoichiometric and fuel-lean methane-, ethane-, and propane-air mixtures containing varying concentrations of Halon 1301. The characteristics of near-limit flames were strongly affected by fuel type but not Halon concentration. The conclusions were that the mechanism of the flammability limits was affected by fuel type but not Halon concentration, that the zero-g flammability limit is probably related to a stability criterion which is affected mostly by the molecular diffusion characteristics of the reactant gases and is mostly independent of chemical kinetics, and that the one-g upward flammability and ignition limits provide adequate criteria for safety at one-g and zero-g for both uninhibited and inhibited mixtures
Thin front propagation in random shear flows
Front propagation in time dependent laminar flows is investigated in the
limit of very fast reaction and very thin fronts, i.e. the so-called
geometrical optics limit. In particular, we consider fronts evolving in time
correlated random shear flows, modeled in terms of Ornstein-Uhlembeck
processes. We show that the ratio between the time correlation of the flow and
an intrinsic time scale of the reaction dynamics (the wrinkling time ) is
crucial in determining both the front propagation speed and the front spatial
patterns. The relevance of time correlation in realistic flows is briefly
discussed in the light of the bending phenomenon, i.e. the decrease of
propagation speed observed at high flow intensities.Comment: 5 Revtex4 pages, 4 figures include
A Variational Principle Based Study of KPP Minimal Front Speeds in Random Shears
Variational principle for Kolmogorov-Petrovsky-Piskunov (KPP) minimal front
speeds provides an efficient tool for statistical speed analysis, as well as a
fast and accurate method for speed computation. A variational principle based
analysis is carried out on the ensemble of KPP speeds through spatially
stationary random shear flows inside infinite channel domains. In the regime of
small root mean square (rms) shear amplitude, the enhancement of the ensemble
averaged KPP front speeds is proved to obey the quadratic law under certain
shear moment conditions. Similarly, in the large rms amplitude regime, the
enhancement follows the linear law. In particular, both laws hold for the
Ornstein-Uhlenbeck process in case of two dimensional channels. An asymptotic
ensemble averaged speed formula is derived in the small rms regime and is
explicit in case of the Ornstein-Uhlenbeck process of the shear. Variational
principle based computation agrees with these analytical findings, and allows
further study on the speed enhancement distributions as well as the dependence
of enhancement on the shear covariance. Direct simulations in the small rms
regime suggest quadratic speed enhancement law for non-KPP nonlinearities.Comment: 28 pages, 14 figures update: fixed typos, refined estimates in
section
Flame Enhancement and Quenching in Fluid Flows
We perform direct numerical simulations (DNS) of an advected scalar field
which diffuses and reacts according to a nonlinear reaction law. The objective
is to study how the bulk burning rate of the reaction is affected by an imposed
flow. In particular, we are interested in comparing the numerical results with
recently predicted analytical upper and lower bounds. We focus on reaction
enhancement and quenching phenomena for two classes of imposed model flows with
different geometries: periodic shear flow and cellular flow. We are primarily
interested in the fast advection regime. We find that the bulk burning rate v
in a shear flow satisfies v ~ a*U+b where U is the typical flow velocity and a
is a constant depending on the relationship between the oscillation length
scale of the flow and laminar front thickness. For cellular flow, we obtain v ~
U^{1/4}. We also study flame extinction (quenching) for an ignition-type
reaction law and compactly supported initial data for the scalar field. We find
that in a shear flow the flame of the size W can be typically quenched by a
flow with amplitude U ~ alpha*W. The constant alpha depends on the geometry of
the flow and tends to infinity if the flow profile has a plateau larger than a
critical size. In a cellular flow, we find that the advection strength required
for quenching is U ~ W^4 if the cell size is smaller than a critical value.Comment: 14 pages, 20 figures, revtex4, submitted to Combustion Theory and
Modellin
Does race impact functional outcomes in patients undergoing robotic partial nephrectomy?
Background: The role of race on functional outcomes after robotic partial nephrectomy (RPN) is still a matter of debate. We aimed to evaluate the clinical and pathologic characteristics of African American (AA) and Caucasian patients who underwent RPN and analyzed the association between race and functional outcomes.
Methods: Data was obtained from a multi-institutional database of patients who underwent RPN in 6 institutions in the USA. We identified 999 patients with complete clinical data. Sixty-three patients (6.3%) were AA, and each patient was matched (1:3) to Caucasian patients by age at surgery, gender, Charlson Comorbidity Index (CCI) and renal score. Bivariate and multivariate logistic regression analyses were used to evaluate predictors of acute kidney injury (AKI). Kaplan-Meier method and multivariable semiparametric Cox regression analyses were performed to assess prevalence and predictors of significant eGFR reduction during follow-up.
Results: Overall, 252 patients were included. AA were more likely to have hypertension (58.7%
Conclusions: Although African American patients were more likely to have hypertension, renal function outcomes of robotic partial nephrectomies were not significantly different when stratified by race. However, future studies with larger cohorts are necessary to validate these findings
Numerical modeling of non-adiabatic heat-recirculating combustors
Abstract A two-dimensional numerical model of spiral counterflow heat recirculating combustors was developed including the effects of temperature-dependent gas and solid properties, viscous flow, surface-to-surface radiative heat transfer, heat conduction within the solid structure, one-step chemical reaction and heat loss from the combustor to its surroundings. A simplified model of heat loss in the 3rd dimension was implemented and found to provide satisfactory representation of such losses at greatly reduced computational cost compared to fully three-dimensional models. The model predicts broad reaction zones with structure decidedly different from conventional premixed flames. Extinction limits were determined over a wide range of Reynolds numbers (2 < Re < 5000) for propane-air mixtures. These limits showed reasonable quantitative agreement with experiments. Comparison of steady and unsteady calculations suggests there are no stability limits apart from these extinction limits. At Re > 500, modeling of turbulent flow and transport was required to obtain such agreement. Heat conduction along the heat exchanger wall has a major impact extinction limits; the wall thermal conductivity providing the broadest limits is actually less than that of air. Radiative heat transfer between walls was found to have an effect similar to that of heat conduction along the wall. In addition to weak-burning extinction limits, strong-burning limits in which the reaction zone moves out of the combustor center toward the inlet were also predicted by the numerical model, in agreement with experiments. It is concluded that several physical processes including radiative transfer, turbulence and wall heat conduction strongly affect the performance of heat-recirculating combustors, but the relative importance of such effects is strongly dependent on Re
Premixed-Gas Flame Propagation in Hele-Shaw Cells
It is well known that buoyancy and thermal expansion affect the propagation ra and shapes of premixed gas flames. The understanding of such effects is complicated by the large density ratio between the reactants and products, which induces a baroclinic production of vorticity due to misalignment of density and pressure gradients at the front, which in turn leads to a complicated multi-dimensional flame/flow interaction. The Hele-Shaw cell, i.e., the region between closely-spaced flat parallel plates, is probably the simplest system in which multi-dimensional convection is presents consequently, the behavior of fluids in this system has been studied extensively (Homsy, 1987). Probably the most important characteristic of Hele-Shaw flows is that when the Reynolds number based on gap width is sufficiently small, the Navier-Stokes equations averaged over the gap reduce to a linear relation, namely a Laplace equation for pressure (Darcy's law). In this work, flame propagation in Hele-Shaw cells is studied to obtain a better understanding of buoyancy and thermal expansion effects on premixed flames. This work is also relevant to the study of unburned hydrocarbon emissions produced by internal combustion engines since these emissions are largely a result of the partial burning or complete flame quenching in the narrow, annular gap called the "crevice volume" between the piston and cylinder walls (Heywood, 1988). A better understanding of how flames propagate in these volumes through experiments using Hele-Shaw cells could lead to identification of means to reduce these emissions
Transport and Chemical Effects on Concurrent and Opposed-flow Flame Spread at Microgravity
Flame spread over flat solid fuel beds is a useful means of understanding more complex two-phase non-premixed spreading flames, such as those that may occur due to accidents in inhabited buildings and orbiting spacecraft. The role of buoyant convection on flame spread is substantial, especially for thermally-thick fuels. The conventional view, as supported by computations and space experiments, is that for quiescent mu-g conditions, the spread rate must be unsteady and decreasing until extinction occurs due to radiative losses. However, this view does not consider that radiative transfer to the fuel surface can enhance flame spread. In this work we suggest that radiative transfer from the flame itself, not just from an external source, can lead to steady flame spread at mu-g over thick fuel beds
Transport And Chemical Effects On Concurrent And Opposed-Flow Flame Spread At Microgravity
Flame spread over flat solid fuel beds is a useful means of understanding more complex two-phase non-premixed spreading flames, such as those that may occur due to accidents in inhabited buildings and orbiting spacecraft. The role of buoyant convection on flame spread is substantial, especially for thermally-thick fuels. With suitable assumptions, deRis showed that the spread rate (S(sub f)) is proportional to the buoyant or forced convection velocity (U) and thus suggests that S(sub f) is indeterminate at mu g (since S(sub f) = U) unless a forced flow is applied. (In contrast, for thermally thin fuels, the ideal S(sub f) is independent of U.) The conventional view, as supported by computations and space experiments, is that for quiescent g conditions, S(sub f) must be unsteady and decreasing until extinction occurs due to radiative losses. However, this view does not consider that radiative transfer to the fuel surface can enhance flame spread. In recent work we have found evidence that radiative transfer from the flame itself can lead to steady flame spread at mu g over thick fuel beds. Our current work focuses on refining these experiments and a companion modeling effort toward the goal of a space flight experiment called Radiative Enhancement Effects on Flame Spread (REEFS) planned for the International Space Station (ISS) c. 2007
- …